期刊文献+
共找到49篇文章
< 1 2 3 >
每页显示 20 50 100
基于堆栈式自动编码器的加密流量识别方法 被引量:17
1
作者 王攀 陈雪娇 《计算机工程》 CAS CSCD 北大核心 2018年第11期140-147,153,共9页
基于浅层机器学习的加密流量识别方法准确率偏低,在特征提取和选择方面耗时耗力。为此,提出一种基于堆栈式自动编码器(SAE)的加密流量识别方法。该方法利用SAE的无监督特性及在数据降维等方面的优势,结合多层感知机(MLP)的有监督分类学... 基于浅层机器学习的加密流量识别方法准确率偏低,在特征提取和选择方面耗时耗力。为此,提出一种基于堆栈式自动编码器(SAE)的加密流量识别方法。该方法利用SAE的无监督特性及在数据降维等方面的优势,结合多层感知机(MLP)的有监督分类学习,实现对加密应用流量的准确识别。考虑到样本数据集的类别不平衡性对分类精度的影响,采用SMOTE过抽样方法对不平衡数据集进行处理。实验结果表明,该方法各项性能指标均优于MLP加密流量识别方法,识别精确度和召回率以及F1-Score均可达到99%。 展开更多
关键词 加密流量识别 深度学习 堆栈式自动编码器 流量分类 多层感知机 卷积神经网络
下载PDF
基于数据挖掘的绿色设计中客户需求向工程特性权重转化方法 被引量:16
2
作者 张雷 钟言久 +3 位作者 袁远 李璟 秦旭 董万富 《中国机械工程》 EI CAS CSCD 北大核心 2019年第2期174-182,共9页
针对客户需求向工程特性转化过程中存在的主观性、模糊性和复杂性等问题,提出了一种基于数据挖掘的客户需求数据向工程特性权重的转化方法。利用模糊层次分析法对采集到的客户需求数据进行分析,得到客户需求重要度,建立了单一客户的质量... 针对客户需求向工程特性转化过程中存在的主观性、模糊性和复杂性等问题,提出了一种基于数据挖掘的客户需求数据向工程特性权重的转化方法。利用模糊层次分析法对采集到的客户需求数据进行分析,得到客户需求重要度,建立了单一客户的质量屋,获取该客户需求对应的工程特性权重。构建了多层感知器模型,挖掘客户需求数据与工程特性权重之间的关系,确定客户需求向工程特性权重之间的转化模型。最后以减速器的客户需求与工程特性的转化为例,验证了所提方法的可行性和有效性。 展开更多
关键词 数据挖掘 客户需求 多层感知器 工程特性
下载PDF
基于弱监督下改进的CBAM-ResNet18模型识别苹果多种叶部病害 被引量:8
3
作者 张文景 蒋泽中 秦立峰 《智慧农业(中英文)》 CSCD 2023年第1期111-121,共11页
针对苹果叶部病害图像在仅有图像类别标注的弱监督的条件下识别准确率低的问题,提出了一种基于改进的CBAM-ResNet算法进行苹果叶部病害识别。以ResNet18作为基础模型,对轻量级卷积块注意力模块(Convolutional Block Attention Module,CB... 针对苹果叶部病害图像在仅有图像类别标注的弱监督的条件下识别准确率低的问题,提出了一种基于改进的CBAM-ResNet算法进行苹果叶部病害识别。以ResNet18作为基础模型,对轻量级卷积块注意力模块(Convolutional Block Attention Module,CBAM)注意力机制中通道注意力模块中的多层感知机(Multilayer Perceptron,MLP)进行升维改进,放大苹果叶部病害特征细节;将改进的CBAM融入残差模块中,以加强对关键细节特征的提取,将AlphaDropout配合SeLU (Scaled Exponential Linearunits)融入网络中,防止其网络的过拟合化,加速模型收敛效果;最后,采用单周期余弦退火算法调整学习率,得到病害识别模型。训练在样本图像均只进行图像级标注的弱监督下进行,大大降低标注成本。通过消融实验,探究出改进CBAM中MLP最佳升维维度为2,相对于原CBAM,准确率提升0.32%,并在参数量增加17.59%的情况下,每轮训练时长减少8 s。在包含苹果斑点落叶病、褐斑病、花叶病、灰斑病、锈病等5种病害的6185幅图像数据集上进行了试验测试,结果显示,在弱监督学习下,识别准确率方面,该模型对苹果5种病害的平均识别准确率达到98.44%,改进的CBAM-ResNet18相比改进前的ResNet18提高了1.47%,且高于VGG16,DesNet121,ResNet50,ResNeXt50,EfficientNet-B0和Xception对照模型;在学习效率方面,改进的CBAM-ResNet18相对于ResNet18在参数量增加24.9%的条件下,每轮的训练时间减少6 s,且在VGG16,DesNet121,ResNet50,ResNeXt50,EfficientNet-B0和Xception对照模型中以每轮137 s最快速度完成模型训练。通过混淆矩阵结果,计算出模型的精确度平均值、召回率平均值和F1分数平均值分别达到了98.43%、98.46%和0.9845。该结果表明,改进的CBAM-ResNet模型可进行苹果叶部病害识别且具有良好的识别结果,可为苹果叶部病害智能识别提供技术支撑。 展开更多
关键词 病害识别 残差网络 注意力机制 余弦退火学习率 迁移学习 卷积块注意力模块 多层感知机
下载PDF
基于多层感知器的异常数据实时检测方法 被引量:9
4
作者 潘轶彪 袁景淇 +2 位作者 朱凯 陈宇 张锐锋 《上海交通大学学报》 EI CAS CSCD 北大核心 2011年第8期1226-1229,共4页
基于神经网络的多层感知器模型,结合滚动学习-预报机制,提出了一种异常数据实时检测方法.该方法在每个当前时刻通过最近的固定长度的历史数据训练神经网络,完成下一时刻的预报.通过神经网络模型残差,确定概率为P的置信区间.当下一时刻... 基于神经网络的多层感知器模型,结合滚动学习-预报机制,提出了一种异常数据实时检测方法.该方法在每个当前时刻通过最近的固定长度的历史数据训练神经网络,完成下一时刻的预报.通过神经网络模型残差,确定概率为P的置信区间.当下一时刻数据落入置信区间内,则该数据被判为正常;反之,则为异常.被判为异常的数据不再用作更新历史数据,而以相应的预报值代替.通过某300 MW燃煤火力电站实际过程数据的在线验证,结果证明了所提出方法的有效性. 展开更多
关键词 人工神经网络 多层感知器 滚动学习-预报 异常数据 实时监测
下载PDF
基于多特征融合的MLP压裂泵单向阀故障诊断研究 被引量:7
5
作者 潘灵永 《机电工程》 CAS 北大核心 2021年第10期1299-1304,1310,共7页
在页岩气开采过程中,压裂泵单向阀因易发生破损而更换频繁,目前单向阀的检测方法存在依赖人工经验、需要专人监测、故障定位准确性不高、全检全换等问题。针对上述问题,以中石化柴驱压裂泵为例,提出了一种基于多特征融合和多层感知器相... 在页岩气开采过程中,压裂泵单向阀因易发生破损而更换频繁,目前单向阀的检测方法存在依赖人工经验、需要专人监测、故障定位准确性不高、全检全换等问题。针对上述问题,以中石化柴驱压裂泵为例,提出了一种基于多特征融合和多层感知器相结合的方法,对其单向阀进行了故障诊断。首先,用多个加速度传感器和压力传感器,对不同单向阀故障情况下的压裂泵工作状态进行了故障采集,对获取的数据分别进行了时域和频域相关的统计特征计算;然后,使用主成分分析法对其主要特征成分进行了提取,构成了新的特征向量;最后,利用多层感知器处理非线性数据的优势,使用其进行了单向阀故障的分类识别,实现了对压裂泵单向阀故障的精确诊断。研究结果表明:基于多特征融合和多层感知器相结合的方法能够准确识别出单向阀多种故障类型,且受工况的影响程度低,平均诊断准确率达到99.6%;多传感器计算得到的特征经处理后,可使不同单向阀故障具有可分性。 展开更多
关键词 压裂泵 单向阀 故障诊断 特征融合 多层感知器
下载PDF
基于注意力机制与改进TF-IDF的推荐算法 被引量:7
6
作者 李昆仑 于志波 +1 位作者 翟利娜 赵佳耀 《计算机工程》 CAS CSCD 北大核心 2021年第8期69-77,共9页
针对传统推荐系统主要依赖用户对物品的评分数据而无法学习到用户和项目的深层次特征的问题,提出基于注意力机制与改进TF-IDF的推荐算法(AMITI)。通过将双层注意力机制引入并行的神经网络推荐模型,提高模型对重要特征的挖掘能力。基于... 针对传统推荐系统主要依赖用户对物品的评分数据而无法学习到用户和项目的深层次特征的问题,提出基于注意力机制与改进TF-IDF的推荐算法(AMITI)。通过将双层注意力机制引入并行的神经网络推荐模型,提高模型对重要特征的挖掘能力。基于用户评分及项目类别改进TF-IDF,依据项目类别权重将推荐结果分类以构建不同类型的项目组并完成推荐。实验结果表明,AMITI算法能提高对文本中重要内容的关注度以及项目分配的注意力权重,有效提升推荐精度并在实现项目组推荐后改善推荐效果。 展开更多
关键词 多层感知机 注意力机制 卷积神经网络 推荐算法 深度学习
下载PDF
融合多层感知机和优化支持向量回归的滑坡位移预测模型 被引量:6
7
作者 李达 瞿伟 +2 位作者 张勤 李久元 凌晴 《武汉大学学报(信息科学版)》 EI CAS CSCD 北大核心 2023年第8期1380-1388,共9页
滑坡位移高精度预测对于滑坡预测预警具有重要的参考价值。顾及智能优化与机器学习组合模型在滑坡时序位移预测中的优势,构建了一种融合多层感知机和优化支持向量回归的滑坡位移组合预测模型。首先采用多层感知机(multilayer perceptron... 滑坡位移高精度预测对于滑坡预测预警具有重要的参考价值。顾及智能优化与机器学习组合模型在滑坡时序位移预测中的优势,构建了一种融合多层感知机和优化支持向量回归的滑坡位移组合预测模型。首先采用多层感知机(multilayer perceptron,MLP)对滑坡位移进行初步预测,然后构建基于差分进化(differential evolution,DE)算法改进的人工鱼群算法(artificial fish swarm algorithm,AFSA)与支持向量回归(support vector regression,SVR)组合预测模型(optimal combination SVR,OPSVR)以修正MLP预测结果。通过两起典型滑坡体北斗实测算例发现,由于DE有效克服了AFSA运行后期人工鱼个体大多处于随机运动状态而无法搜索到全局最优解的问题,提高了其寻优性能,进一步与SVR结合可更合理确定出SVR的超参数,从而提高了其预测精度;相较于单一MLP和SVR预测模型,以及常规智能优化算法(遗传算法、粒子群算法)、改进人工鱼群算法与SVR的组合预测模型,MLP-OPSVR组合预测模型具有更高精度的预测结果,且在滑坡预警研究中具有较好的推广应用价值。 展开更多
关键词 滑坡位移预测 多层感知机 支持向量回归 差分进化算法 人工鱼群算法
原文传递
基于机器学习的煤自然发火期预测 被引量:6
8
作者 张利冬 宋泽阳 +1 位作者 罗振敏 赵珊珊 《中国安全科学学报》 CAS CSCD 北大核心 2022年第12期118-124,共7页
为快速准确地预测煤自然发火期,首先基于大型煤自燃低温氧化试验及文献数据组成数据集,并考虑煤自燃影响因素众多且与发火期存在复杂的非线性关系,建立包含煤自然发火期、环境温度、煤炭热值、水分等参数的数据集;其次采用多层感知机(M... 为快速准确地预测煤自然发火期,首先基于大型煤自燃低温氧化试验及文献数据组成数据集,并考虑煤自燃影响因素众多且与发火期存在复杂的非线性关系,建立包含煤自然发火期、环境温度、煤炭热值、水分等参数的数据集;其次采用多层感知机(MLP)和随机森林(RF)等机器学习方法建立煤自然发火期预测模型,表征内部因素和外部因素对发火期的影响;同时为增强模型的拟合能力和泛化能力,利用特征工程研究特征变量的相关性,以筛选模型的输入特征;然后利用网格搜索法优化模型超参数,以提高模型的预测能力;最后利用学习曲线法评估模型状态,防止模型过拟合。结果表明:RF和MLP模型均能预测煤自然发火期,RF模型的泛化能力更高;RF和MLP模型预测的平均绝对误差(MAE)分别为9.34天和12.10天,说明机器学习模型可同时考虑多个内外影响因素的复杂作用。 展开更多
关键词 煤自然发火期 机器学习 预测模型 随机森林(RF) 多层感知机(mlp)
下载PDF
Simulation of nucleate boiling under ANSYS-FLUENT code by using RPI model coupling with artificial neural networks 被引量:6
9
作者 Brahim Mohamedi Salah Hanini +1 位作者 Abdelrahmane Ararem Nacim Mellel 《Nuclear Science and Techniques》 SCIE CAS CSCD 2015年第4期95-101,共7页
The present study is to develop a new user-defined function using artificial neural networks intent Computational Fluid Dynamics(CFD)simulation for the prediction of water-vapor multiphase flows through fuel assemblie... The present study is to develop a new user-defined function using artificial neural networks intent Computational Fluid Dynamics(CFD)simulation for the prediction of water-vapor multiphase flows through fuel assemblies of nuclear reactor.Indeed,the provision of accurate material data especially for water and steam over a wider range of temperatures and pressures is an essential requirement for conducting CFD simulations in nuclear engineering thermal hydraulics.Contrary to the commercial CFD solver ANSYS-CFX,where the industrial standard IAPWS-IF97(International Association for the Properties of Water and Steam-Industrial Formulation 1997)is implemented in the ANSYS-CFX internal material database,the solver ANSYS-FLUENT provides only the possibility to use equation of state(EOS),like ideal gas law,Redlich-Kwong EOS and piecewise polynomial interpolations.For that purpose,new approach is used to implement the thermophysical properties of water and steam for subcooled water in CFD solver ANSYS-FLUENT.The technique is based on artificial neural networks of multi-layer type to accurately predict 10 thermodynamic and transport properties of the density,specific heat,dynamic viscosity,thermal conductivity and speed of sound on saturated liquid and saturated vapor.Temperature is used as single input parameter,the maximum absolute error predicted by the artificial neural networks ANNs,was around 3%.Thus,the numerical investigation under CFD solver ANSYSFLUENT becomes competitive with other CFD codes of which ANSYS-CFX in this area.In fact,the coupling of the Rensselaer Polytechnical Institute(RPI)wall boiling model and the developed Neural-UDF(User Defined Function)was found to be useful in predicting the vapor volume fraction in subcooled boiling flow. 展开更多
关键词 人工神经网络 神经网络模拟 耦合模型 过冷沸腾 RPI 代码 IAPWS-IF97 CFD软件
下载PDF
基于神经网络CA/OS-CFAR检测方法 被引量:5
10
作者 王皓 衣同胜 《兵工自动化》 2018年第2期15-18,共4页
在杂波边缘和多目标的复杂环境下,建立性能稳定的自适应检测技术是提高恒虚警率处理能力的关键。针对单元平均恒虚警检测(cell averaging-constant false alarm rate)和有序统计量恒虚警检测(ordered statistic-constant false alarm ra... 在杂波边缘和多目标的复杂环境下,建立性能稳定的自适应检测技术是提高恒虚警率处理能力的关键。针对单元平均恒虚警检测(cell averaging-constant false alarm rate)和有序统计量恒虚警检测(ordered statistic-constant false alarm rate)的优缺点,提出一种基于神经网络的检测方法(cell averaging/ordered statistic-constant false alarm rate)。利用神经网络进行最优检测方法判断,根据选定的检测方法计算出检测阈值。通过训练计算初始阈值,采用神经网络分类并识别输入的类型。将该阈值与CA-CFAR和OS-CFAR计算结果相比较,并选用均匀杂波、多目标和杂波边缘环境的仿真案例进行测试。实验结果表明:该方法可在均值和非均匀的杂波背景中,能有效地进行最优检测方法判断。 展开更多
关键词 转换 神经网络 多层感知器(mlp) 恒虚警率(CFAR) 单元平均数(CA) 有序统计(OS)
下载PDF
湖底沉积物分类的新方法研究 被引量:4
11
作者 黄海宁 李志舜 《西北工业大学学报》 EI CAS CSCD 北大核心 1998年第3期421-426,共6页
从小波分析——多分辨率分解的观点出发,对不同的实测湖底沉积物的回波,用Daubechies小波进行了Malat塔式分解,从中提取某些特征,用人工神经网络进行了分类,取得了对三类沉积物识别,平均正确识别率90%以上,对... 从小波分析——多分辨率分解的观点出发,对不同的实测湖底沉积物的回波,用Daubechies小波进行了Malat塔式分解,从中提取某些特征,用人工神经网络进行了分类,取得了对三类沉积物识别,平均正确识别率90%以上,对五类沉积物识别,平均正确识别率87%以上的较好结果。另外,对采取不同的分解特征进行分类的效果。 展开更多
关键词 湖底沉积物 分类 特征提取 小波变换
下载PDF
基于多维能力和知识图谱-多层感知机的变压器运行状态画像构建方法 被引量:1
12
作者 舒胜文 陈阳阳 +3 位作者 张梓奇 方舒绮 王国彬 曾静岚 《电网技术》 EI CSCD 北大核心 2024年第2期750-759,共10页
利用大数据和画像技术对电力变压器运行状态进行准确评价有利于保障电力系统的安全稳定运行。针对电力变压器运行状态传统评价方法存在的评价维度过于单一、主观性较强等不足,提出了一种基于多维能力和知识图谱-多层感知机的变压器运行... 利用大数据和画像技术对电力变压器运行状态进行准确评价有利于保障电力系统的安全稳定运行。针对电力变压器运行状态传统评价方法存在的评价维度过于单一、主观性较强等不足,提出了一种基于多维能力和知识图谱-多层感知机的变压器运行状态画像构建方法。首先,构建了由绝缘水平、负载能力、抗短路能力、能效等级和调压能力五个能力构成的变压器运行状态画像体系;然后,融合知识图谱(knowledge graph,KG)与多层感知机(multilayer perceptron,MLP),建立了一种变压器运行状态画像分析模型;最后,基于某地区1368台110kV变压器的实际运行数据,开展了变压器运行状态画像的实例分析,并与随机森林(random forest,RF)和支持向量机(support vector machine,SVM)方法的画像分析结果进行对比。研究结果表明,所提方法对变压器运行状态画像的准确率达到96.35%,优于RF算法(准确率89%)和SVM算法(准确率77%),为电力变压器的运行状态评价提供了一种新思路。 展开更多
关键词 电力变压器 运行状态 画像构建 多维能力 知识图谱 多层感知机
下载PDF
基于MLP神经网络模型的客户评分应用研究 被引量:4
13
作者 王冰 韩俊宇 《计算机与现代化》 2017年第3期27-31,共5页
判断客户对产品购买的可能性,是企业营销人员重点关注的问题。针对保险产品客户与其他金融客户交叉销售,采用人工智能方法高精度量化客户的潜在购买力。根据对个人保险客户营销的总结,提出保险客户购买评分模型。通过使用中国邮政代理... 判断客户对产品购买的可能性,是企业营销人员重点关注的问题。针对保险产品客户与其他金融客户交叉销售,采用人工智能方法高精度量化客户的潜在购买力。根据对个人保险客户营销的总结,提出保险客户购买评分模型。通过使用中国邮政代理金融的简易保险客户数据,对模型的有效性进行实证研究。研究结果表明,该模型提供了较高效的预测准确率和具体的评价标准,具有良好的预测功能,可以帮助企业及时发现最有效的营销客户,最大程度上提高营销成功率。 展开更多
关键词 评分模型 多层感知器(mlp) 神经网络 数据挖掘
下载PDF
基于深度学习的图书资源借阅推荐算法研究
14
作者 王德才 蒋业政 冯雪萍 《信息与电脑》 2024年第4期132-134,共3页
图书馆借阅系统的升级与创新是提升图书馆服务质量和读者体验的关键,也是智慧图书馆建设的重要工作。本研究通过采集图书馆的借阅信息、读者信息和图书信息等数据,采用基于Transformer的双向编码(Bidirectional Encoder Representations... 图书馆借阅系统的升级与创新是提升图书馆服务质量和读者体验的关键,也是智慧图书馆建设的重要工作。本研究通过采集图书馆的借阅信息、读者信息和图书信息等数据,采用基于Transformer的双向编码(Bidirectional Encoder Representations from Transformers,BERT)模型提取图书特征,应用多层感知机(Multilayer Perceptron,MLP)深度学习方法,对读者的历史借阅记录信息进行全面的数据挖掘,分析读者的借阅偏好。结果表明,BERT-MLP模型的性能明显优于基础神经网络模型,且可以更有效地找到图书推荐数据的重要特征。本研究可为提高图书馆个性化服务水平提供理论依据。 展开更多
关键词 深度学习 多层感知机(mlp) 基于Transformer的双向编码(BERT) 推荐算法
下载PDF
基于机器视觉技术的小粒中药材种子净度快速检测 被引量:4
15
作者 程莹 许亚男 +5 位作者 侯浩楠 宁翠玲 杨成民 董学会 曹海 孙群 《中国农业大学学报》 CAS CSCD 北大核心 2022年第5期114-122,共9页
为探究机器视觉技术用于小粒中药材种子净度快速检测的可行性,以黄芩、桔梗、黄芪、紫苏和柴胡5种常见小粒中药材种子为材料,使用扫描仪获取净种子、其他植物种子和所含杂质的图像,采用种子自动化分析系统(PhenoSeed)批量提取种子、其... 为探究机器视觉技术用于小粒中药材种子净度快速检测的可行性,以黄芩、桔梗、黄芪、紫苏和柴胡5种常见小粒中药材种子为材料,使用扫描仪获取净种子、其他植物种子和所含杂质的图像,采用种子自动化分析系统(PhenoSeed)批量提取种子、其他植物种子及所含杂质的颜色、尺寸及纹理信息,通过相关性分析和主成分分析进行特征变量的筛选,采用多层感知器(MLP)和二元逻辑回归(BLR)建立上述5种中药材种子净度快速检测模型。结果表明,净种子、其他植物种子及所含杂质在物理指标方面存在显著差异,针对不同种子,采用不同指标建立的MLP净度模型的训练集和测试集准确率均在96.0%以上,该模型在不同中药材种子上的稳定性均优于BLR模型;以特征指标建立的模型稳定性优于全部指标的建模效果,运用特征变量建立的MLP模型对不同净度梯度(75.0%~100.0%)的混合样本进行预测,回归曲线的决定系数均达到0.99以上。采用机器视觉技术获取种子、其他植物种子及所含杂质颜色、尺寸和纹理等信息,以特征指标建立MLP模型可用于小粒中药材种子的净度快速检测。 展开更多
关键词 小粒中药材种子 净度 机器视觉 多层感知器(mlp) 二元逻辑回归(BLR)
原文传递
基于MLP的海上无人跨域协同效能评估系统的设计与实现
16
作者 胡宏宇 郜天柱 谷海涛 《系统仿真学报》 CAS CSCD 北大核心 2024年第11期2542-2551,共10页
针对海上无人协同跨域系统的探测能力效能评估问题,需开展评估指标、评估算法等研究。将机器人自身参数与环境参数结合构建了评价指标计算模型,如探测覆盖率、重复探测率、单位面积上的像素数量、能量等指标和海上无人跨域协同系统探测... 针对海上无人协同跨域系统的探测能力效能评估问题,需开展评估指标、评估算法等研究。将机器人自身参数与环境参数结合构建了评价指标计算模型,如探测覆盖率、重复探测率、单位面积上的像素数量、能量等指标和海上无人跨域协同系统探测能力指标评价体系,降低了评估过程中的主观性,采用ADC(availability dependability capability)法结合层次分析法生成训练数据,利用MLP(multilayer perceptron)神经网络法客观地衡量系统的效能,结果表明:生成的数据集规模达到2万,该模型评估误差在3%以下,验证了其有效性和适用性;利用PyQt5框架搭建了评估系统界面,实现了环境建模、数据录入、效能评估的功能。 展开更多
关键词 效能评估 mlp 海上无人跨域协同系统 ADC模型 层次分析法
下载PDF
非语言信息增强和对比学习的多模态情感分析模型
17
作者 刘佳 宋泓 +2 位作者 陈大鹏 王斌 张增伟 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第8期3372-3381,共10页
因具有突出的表征和融合能力,深度学习方法近年来越来越多地被应用于多模态情感分析领域。已有的研究大多利用文字、面部表情、语音语调等多模态信息对人物的情绪进行分析,并主要使用复杂的融合方法。然而,现有模型在长时间序列中未充... 因具有突出的表征和融合能力,深度学习方法近年来越来越多地被应用于多模态情感分析领域。已有的研究大多利用文字、面部表情、语音语调等多模态信息对人物的情绪进行分析,并主要使用复杂的融合方法。然而,现有模型在长时间序列中未充分考虑情感的动态变化,导致情感分析性能不佳。针对这一问题,该文提出非语言信息增强和对比学习的多模态情感分析网络模型。首先,使用长程文本信息去促使模型学习音频和视频在长时间序列中的动态变化,然后,通过门控机制消除模态间的冗余信息和语义歧义。最后,使用对比学习加强模态间的交互,提升模型的泛化性。实验结果表明,在数据集CMU-MOSI上,该模型将皮尔逊相关系数(Corr)和F1值分别提高了3.7%和2.1%;而在数据集CMU-MOSEI上,该模型将“Corr”和“F1值”分别提高了1.4%和1.1%。因此,该文提出的模型可以有效利用模态间的交互信息,并去除信息冗余。 展开更多
关键词 多模态情感分析 多模态融合 信息增强 多层感知器
下载PDF
基于模拟退火法与多层感知机的变压器故障诊断模型及其泛化性能研究
18
作者 高超 王志武 +7 位作者 冯玉辉 杜预 宋兵 高二亚 李乾 饶召伟 邹国平 杨仕友 《高压电器》 CAS CSCD 北大核心 2024年第11期77-85,共9页
为诊断电力变压器内部的潜伏性故障,以溶解气体分析(DGA)数据为特征量,提出了一种基于多层感知机(MLP)的变压器故障诊断模型。以实际运行变压器的故障数据为学习样本,利用模拟退火法实现多层感知机内部节点之间的连接权重优化。以不同... 为诊断电力变压器内部的潜伏性故障,以溶解气体分析(DGA)数据为特征量,提出了一种基于多层感知机(MLP)的变压器故障诊断模型。以实际运行变压器的故障数据为学习样本,利用模拟退火法实现多层感知机内部节点之间的连接权重优化。以不同特征组合作为MLP的输入,对比、分析了MLP诊断故障类型的正确率;研究了MLP拓扑结构、参数正则化等对诊断模型泛化性能的影响。使用训练数据以外的变压器故障数据测试学习完成的诊断模型,获得较高的测试准确率。 展开更多
关键词 人工神经网络 多层感知机 模拟退火 DGA 故障诊断
下载PDF
基于多层感知机改进型Xception人脸表情识别 被引量:4
19
作者 韩保金 任福继 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2022年第6期65-72,共8页
针对使用深度学习提取人脸表情图像特征时易出现冗余特征,提出了一种基于多层感知机(MLP)的改进型Xception人脸表情识别网络.该模型将Xception网络提取的特征输入至多层感知机中进行加权处理,提取出主要特征,滤除冗余特征,从而使得识别... 针对使用深度学习提取人脸表情图像特征时易出现冗余特征,提出了一种基于多层感知机(MLP)的改进型Xception人脸表情识别网络.该模型将Xception网络提取的特征输入至多层感知机中进行加权处理,提取出主要特征,滤除冗余特征,从而使得识别准确率得到提升.首先将图像缩放为48*48,然后对数据集进行增强处理,再将这些经过处理的图片送入本文所提网络模型中.消融实验对比表明:本文模型在CK+数据集、JAFFE数据集和MMI数据集上的正确识别率分别为98.991%、99.02%和80.339%,Xception模型在CK+数据集、JAFFE数据集和MMI数据集上的正确识别率分别为97.4829%、90.476%和74.0678%,Xception+2lay模型在CK+数据集、JAFFE数据集和MMI数据集上的正确识别率分别为98.04%、84.06%和75.593%.通过以上消融实验对比,本文方法的识别正确率明显优于Xception模型与Xception+2lay模型.与其他模型相比较也验证了本文模型的有效性. 展开更多
关键词 人脸表情识别 卷积神经网络(CNN) 多层感知机 Xception 深度可分离卷积
下载PDF
基于机器学习的ICESat-2激光卫星点云去噪算法
20
作者 李杰 孟文君 +2 位作者 郝皎宇 董志鹏 唐秋华 《海岸工程》 2024年第4期263-272,共10页
ICESat-2(Ice,Cloud,and Land Elevation Satellite-2)激光卫星作为当前最先进的激光测高卫星之一,通过发射532 nm波长的激光,能够有效获取浅海区域的水深数据,极大地推进了浅海测深技术的发展。然而,ICESat-2的原始数据常受到噪声点云... ICESat-2(Ice,Cloud,and Land Elevation Satellite-2)激光卫星作为当前最先进的激光测高卫星之一,通过发射532 nm波长的激光,能够有效获取浅海区域的水深数据,极大地推进了浅海测深技术的发展。然而,ICESat-2的原始数据常受到噪声点云的干扰,给数据的后期处理带来了不小的挑战。为提高数据处理的准确性和效率,本研究针对ICESat-2点云在水平方向上比垂直方向更为密集的特性,开发了一种基于多层感知机(Multilayer Perceptron,MLP)的去噪算法。该算法综合考虑了水平椭圆搜索区域内的点密度、点与点之间的平均距离、最近邻点间的距离(分别为3和5)等特征值,实现对噪声点的有效识别和去除。通过选取澳大利亚某岛礁区域的ICESat-2数据作为训练集,同时使用经过我国西沙群岛玉琢礁和东岛的数据对所提出的去噪模型进行验证。实验结果表明,本研究所提出的去噪方法正确率达到90%以上,显著优于现有的OPTICS去噪算法以及基于置信度的去噪结果。这一成果不仅为ICESat-2数据的噪声去除提供了一种新的解决方案,也为相关领域的研究提供了可靠的数据支持。 展开更多
关键词 ICESat-2激光卫星 点云去噪 机器学习 多层感知机
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部