Phototheranostics that concurrently and complementarily integrate real-time diagnosis and in situ therapeutic capabilities in one platform has become the advancing edge of precision medicine.Organic agents possess the...Phototheranostics that concurrently and complementarily integrate real-time diagnosis and in situ therapeutic capabilities in one platform has become the advancing edge of precision medicine.Organic agents possess the merits of facile preparation,high purity,tunable photophysical property,good biocompatibility,and potential biodegradability,which have shown great promise for disease theranostics.This review summarizes the recent achievements of organic phototheranostic agents and applications,especially which rationally utilize energy dissipation pathways of Jablonski diagram to modulate the fluorescence emission,photoacoustic/photothermal production,and photodynamic processes.Of particular interest are the systems exhibiting huge differences in aggregate state as compared with the solution or single molecule form,during which the intramolecular motions play an important role in regulating the photophysical properties.The recent advances from such an aspect for biomedical applications including high-resolution imaging,activatable imaging and therapy,adaptive theranostics,image-guided surgery,immunotherapy,and afterglow imaging are discussed.A brief summary and perspective in this field are also presented.We hope this review will be helpful to the researchers interested in bioprobe design and theranostic applications,and inspire new insights into the linkage between aggregate science and biomedical field.展开更多
The prediction of incipient motion has had great importance to the theory of sediment transport. The most commonly used methods are based on the concept of critical shear stress and employ an approach similar, or iden...The prediction of incipient motion has had great importance to the theory of sediment transport. The most commonly used methods are based on the concept of critical shear stress and employ an approach similar, or identical, to the Shields diagram. An alternative method that uses the movability number, defined as the ratio of the shear velocity to the particle's settling velocity, was employed in this study. A large amount of experimental data were used to develop an empirical incipient motion criterion based on the movability number. It is shown that this approach can provide a simple and accurate method of computing the threshold condition for sediment motion.展开更多
It is shown that in the standard model of KS~0 regeneration a system of non-coupled equations of motion is used instead of the coupled ones. A model alternative to the standard one is proposed. A calculation performed...It is shown that in the standard model of KS~0 regeneration a system of non-coupled equations of motion is used instead of the coupled ones. A model alternative to the standard one is proposed. A calculation performed by means of the diagram technique agrees with that based on exact solution of the equations of motion.展开更多
基金National Natural Science Foundation of China(51873092,51961160730,and 51673150)the National Key R&D Program of China(Intergovernmental Cooperation Project,2017YFE0132200)+2 种基金Tianjin Science Fund for Distinguished Young Scholars(19JCJQJC61200)Key Public Relations Project funded by Tianjin Health and Family Planning Commission(16KG103)the Fundamental Research Funds for the Central Universities,Nankai University。
文摘Phototheranostics that concurrently and complementarily integrate real-time diagnosis and in situ therapeutic capabilities in one platform has become the advancing edge of precision medicine.Organic agents possess the merits of facile preparation,high purity,tunable photophysical property,good biocompatibility,and potential biodegradability,which have shown great promise for disease theranostics.This review summarizes the recent achievements of organic phototheranostic agents and applications,especially which rationally utilize energy dissipation pathways of Jablonski diagram to modulate the fluorescence emission,photoacoustic/photothermal production,and photodynamic processes.Of particular interest are the systems exhibiting huge differences in aggregate state as compared with the solution or single molecule form,during which the intramolecular motions play an important role in regulating the photophysical properties.The recent advances from such an aspect for biomedical applications including high-resolution imaging,activatable imaging and therapy,adaptive theranostics,image-guided surgery,immunotherapy,and afterglow imaging are discussed.A brief summary and perspective in this field are also presented.We hope this review will be helpful to the researchers interested in bioprobe design and theranostic applications,and inspire new insights into the linkage between aggregate science and biomedical field.
文摘The prediction of incipient motion has had great importance to the theory of sediment transport. The most commonly used methods are based on the concept of critical shear stress and employ an approach similar, or identical, to the Shields diagram. An alternative method that uses the movability number, defined as the ratio of the shear velocity to the particle's settling velocity, was employed in this study. A large amount of experimental data were used to develop an empirical incipient motion criterion based on the movability number. It is shown that this approach can provide a simple and accurate method of computing the threshold condition for sediment motion.
文摘It is shown that in the standard model of KS~0 regeneration a system of non-coupled equations of motion is used instead of the coupled ones. A model alternative to the standard one is proposed. A calculation performed by means of the diagram technique agrees with that based on exact solution of the equations of motion.