光伏并网变流器最大功率点(maximum power point,MPP)电压范围的确定是以组件的输出特性研究为基础的。组件的数学模型精确度较高,但涉及到超越方程,求解复杂且输入参数多,不适用于工程设计。简化模型计算过程简单但不能准确表述弱光条...光伏并网变流器最大功率点(maximum power point,MPP)电压范围的确定是以组件的输出特性研究为基础的。组件的数学模型精确度较高,但涉及到超越方程,求解复杂且输入参数多,不适用于工程设计。简化模型计算过程简单但不能准确表述弱光条件下的组件输出特性。基于对数学模型及简化模型的对比分析,提出了一种精确的工程模型,该模型以数学模型为基准,对简化模型的补偿参数进行拟合修正,同时兼顾精确度与复杂程度。利用MATHCAD搭建仿真模型,将输出结果与数学模型输出进行对比,验证了精确工程模型的准确性。以该精确工程模型为基础,通过分析光照、温度等外界条件对MPP电压的影响,确定了并网变流器最大功率点跟踪工作电压范围,并通过实验验证了结论的正确性。展开更多
文摘光伏并网变流器最大功率点(maximum power point,MPP)电压范围的确定是以组件的输出特性研究为基础的。组件的数学模型精确度较高,但涉及到超越方程,求解复杂且输入参数多,不适用于工程设计。简化模型计算过程简单但不能准确表述弱光条件下的组件输出特性。基于对数学模型及简化模型的对比分析,提出了一种精确的工程模型,该模型以数学模型为基准,对简化模型的补偿参数进行拟合修正,同时兼顾精确度与复杂程度。利用MATHCAD搭建仿真模型,将输出结果与数学模型输出进行对比,验证了精确工程模型的准确性。以该精确工程模型为基础,通过分析光照、温度等外界条件对MPP电压的影响,确定了并网变流器最大功率点跟踪工作电压范围,并通过实验验证了结论的正确性。