通过稀疏重构得到传感器阵列输出数据的稀疏表示模型,研究了单快拍采样情形下的信号到达角(Direction of Arrival,DOA)估计问题。提出了一种基于最小均方误差(Minimum Mean-Square Error,MMSE)准则迭代实现的单快拍到达角估计算法(Itera...通过稀疏重构得到传感器阵列输出数据的稀疏表示模型,研究了单快拍采样情形下的信号到达角(Direction of Arrival,DOA)估计问题。提出了一种基于最小均方误差(Minimum Mean-Square Error,MMSE)准则迭代实现的单快拍到达角估计算法(Iterative Implementation of MMSE,II-MMSE)。该算法将原有的稀疏表示模型中稀疏信号矢量的求解问题,转化为迭代求解稀疏功率对角阵,进而估计多目标信号的DOA。给出了算法的完整实现流程,从理论上分析了II-MMSE算法的迭代收敛性和对阵列模型误差的鲁棒性。仿真结果表明,II-MMSE算法在低信噪比、相干背景、小样本、阵列未校准等条件下都具有良好的测向精度和多目标分辨能力。展开更多
Minimum mean square error(MMSE) detection algorithm can achieve nearly optimal performance when the number of antennas at the base station(BS) is large enough compared to the number of users. But the traditional MMSE ...Minimum mean square error(MMSE) detection algorithm can achieve nearly optimal performance when the number of antennas at the base station(BS) is large enough compared to the number of users. But the traditional MMSE involves complicated matrix inversion. In this paper, we propose a modified MMSE algorithm which exploits the channel characteristics occurring in massive multiple-input multipleoutput(MIMO) channels and the relaxation iteration(RI) method to avoid the matrix inversion. A proper initial solution is given to accelerate the convergence speed. In addition, we point out that the channel estimation scheme used in channel hardening-exploiting message passing(CHEMP) receiver is very appropriate for our proposed detection algorithm. Simulation results verify that the proposed algorithm can achieve very close performance of the traditional MMSE algorithm with a small number of iterations.展开更多
文摘通过稀疏重构得到传感器阵列输出数据的稀疏表示模型,研究了单快拍采样情形下的信号到达角(Direction of Arrival,DOA)估计问题。提出了一种基于最小均方误差(Minimum Mean-Square Error,MMSE)准则迭代实现的单快拍到达角估计算法(Iterative Implementation of MMSE,II-MMSE)。该算法将原有的稀疏表示模型中稀疏信号矢量的求解问题,转化为迭代求解稀疏功率对角阵,进而估计多目标信号的DOA。给出了算法的完整实现流程,从理论上分析了II-MMSE算法的迭代收敛性和对阵列模型误差的鲁棒性。仿真结果表明,II-MMSE算法在低信噪比、相干背景、小样本、阵列未校准等条件下都具有良好的测向精度和多目标分辨能力。
基金supported by the National Hightech R&D Program of China(2014AA01A704)the Natural Science Foundation of China(61201135)111 Project(B08038)
文摘Minimum mean square error(MMSE) detection algorithm can achieve nearly optimal performance when the number of antennas at the base station(BS) is large enough compared to the number of users. But the traditional MMSE involves complicated matrix inversion. In this paper, we propose a modified MMSE algorithm which exploits the channel characteristics occurring in massive multiple-input multipleoutput(MIMO) channels and the relaxation iteration(RI) method to avoid the matrix inversion. A proper initial solution is given to accelerate the convergence speed. In addition, we point out that the channel estimation scheme used in channel hardening-exploiting message passing(CHEMP) receiver is very appropriate for our proposed detection algorithm. Simulation results verify that the proposed algorithm can achieve very close performance of the traditional MMSE algorithm with a small number of iterations.