AIM: To assess the clinical value of contrast-enhanced intraoperative ultrasound (CE-IOUS) as a novel tool in partial hepatectomy for cirrhotic patients with hepatocellular carcinoma (HCC). METHODS: From January...AIM: To assess the clinical value of contrast-enhanced intraoperative ultrasound (CE-IOUS) as a novel tool in partial hepatectomy for cirrhotic patients with hepatocellular carcinoma (HCC). METHODS: From January 2007 to September 2007, a total of 20 consecutive cirrhotic patients with HCC scheduled to undergo partial hepatectomy were studied. Preoperative contrast enhanced computer tomography (CT) and/or magnetic resonance (MR) scans were performed within 1-2 wk before operation. Intraoperative ultrasound (IOUS) and CE-IOUS were carried out after mobilization of the liver. Lesions on precontrast and postcontrast scans were counted and mapped. CE-IOUS was performed with intravenous injection of ultrasound contrast agents SonoVue (Bracco Imaging, Milan, Italy). Arterial, portal and late phases of contrast enhancement were recorded and analyzed. Nodules showing arterial phase hyper-enhancing and/or hypo-enhancing in late parenchymal phase were considered malignant and removed surgically. Ultrasound-guided biopsy and ethanol ablation would be an option if the nodule could not be removed surgically. Newly detected nodules on IOUS showing iso-enhancement in both arterial and late phases were considered benign. These nodules were either removed surgically if they were close to the main lesion or followed by examinations of alpha-fetoprotein (AFP) level and ultrasound and/or CT/MR every 3 too. RESULTS: IOUS found 41 nodules in total, among which 17 (41.46%) were newly detected compared to preoperative imaging. Thirty-three nodules were diagnosed malignant by CE-IOUS, including one missed by IOUS. The sensitivity and specificity of CE-IOUS on detecting HCC nodules are 100% (33/33 and 100% (9/9), respectively. Nine nodules were considered benign by CE-IOUS, four was confirmed at histology and five by follow-up. CE-IOUS changed the surgical strategy in 35% (7/20) of patients and avoid unnecessary intervention in 30% (6/20) of patients. CONCLUSION: CE-IOUS is a useful mea展开更多
Microbubbles have been used for many years now in clinical practice as contrast agents in ultrasound imaging.Recently,their therapeutic applications have also attracted more attention.However,the short circulation tim...Microbubbles have been used for many years now in clinical practice as contrast agents in ultrasound imaging.Recently,their therapeutic applications have also attracted more attention.However,the short circulation time(minutes)and relatively large size(two to ten micrometers)of currently used commercial microbubbles do not allow effective extravasation into tumor tissue,preventing efficient tumor targeting.Fortunately,more multifunctional and theranostic nanoparticles with some special advantages over the traditional microbubbles have been widely investigated and explored for biomedical applications.The way to synthesize an ideal ultrasound contrast agent based on nanoparticles in order to achieve an expected effect on contrast imaging is a key technique.Currently a number of nanomaterials,including liposomes,polymers,micelles,dendrimers,emulsions,quantum dots,solid nanoparticles etc.,have already been applied to pre or clinical trials.Multifunctional and theranostic nanoparticles with some special advantages,such as the tumor-targeted(passive or active),multi-mode contrast agents(magnetic resonance imaging,ultrasonography or fluorescence),carrier or enhancer of drug delivery,and combined chemo or thermal therapy etc.,are rapidly gaining popularity and have shown a promising application in the field of cancer treatment.In this mini review,the trends and the advances of multifunctional and theranostic nanoparticles are briefly discussed.展开更多
BACKGROUND: Studies have demonstrated that ultrasound-mediated microbubble destruction significantly improves transfection efficiency of enhanced green fluorescent protein (EGFP) in in vitro cultured retinal gangli...BACKGROUND: Studies have demonstrated that ultrasound-mediated microbubble destruction significantly improves transfection efficiency of enhanced green fluorescent protein (EGFP) in in vitro cultured retinal ganglial cells (RGCs). OBJECTIVE: To investigate the feasibility of ultrasound-mediated microbubble destruction for EGFP transfection in rat RGCs, and to compare efficiency and cell damage with traditional transfection methods. DESIGN, TIME AND SETTING: In vivo, gene engineering experiment. The study was performed at the Central Laboratory, Institute of Ultrasonic Imaging, Chongqing Medical University from March to July 2008. MATERIALS: Eukaryotic expression vector plasmid EGFP and microbubbles were prepared by the Institute of Ultrasonic Imaging, Chongqing Medical University. The microbubbles were produced at a concentration of 8.7 × 10^11/L, with a 2-4 μm diameter, and 10-hour half-life in vitro. METHODS: A total of 50 Sprague Dawley rats were randomly assigned to four groups. Normal controls (n = 5) were infused with 5 μL normal saline to the vitreous cavity; the naked plasmid group (n = 15) was infused with 5 pL EGFP plasmid to the vitreous cavity; in the plasmid with ultrasound group (n = 15), the eyes were irradiated with low-energy ultrasound wave (0.5 W/cm^2) for a total of 60 seconds (irradiated for 5 seconds, at 10-second intervals) immediately following infusion of EGFP plasmids to the vitreous cavities. In the microbubble-ultrasound group (n = 15), the eyes were irradiated with the same power of ultrasonic wave immediately following infusion of microbubbles containing EGFP plasmids to the vitreous cavities. MAIN OUTCOME MEASURES: After 7 days, retinal preparations and EGFP expression in RGCs were observed by fluorescence microscopy. RGC quantification in the retinal ganglion cell layer was performed. In addition, EGFP mRNA expression was semi-quantitatively determined by RT-PCR. RESULTS: The transfection efficiency of EGFP to RGCs by microbubbles wi展开更多
Objective: To explore the role of the abnormal expression of miRNAs in the development process of non-small cell lung cancer and the feasibility of ultrasound microbubble-mediated gene therapy after transfecting antis...Objective: To explore the role of the abnormal expression of miRNAs in the development process of non-small cell lung cancer and the feasibility of ultrasound microbubble-mediated gene therapy after transfecting antisense miRNA-224 and miRNA-122 a plasmids into nonsmall cell lung cancer A549 cells. Methods: Antisense miRNA-224 and miRNA-122 a plasmids were transfected into non-small cell lung cancer A549 cells on the optimal ultrasound microbubble mediated condition. We set up a control group. The cell proliferation activity, apoptosis, invasion ability were detected by MTT assay, Annexin V-PE, Transwell invasion experiment and colony formation assay, respectively. Results: The expression of mi RNA-224 decreased and the expression of miRNA-122 a rose after the plasmids of target genes were transfected into non-small cell lung cancer A549 cells, and there were significant differences when compared with those of the control group(P<0.05). After the plasmids of target genes were transfected into A549 cells, the growth of antisense miRNA-224 and miRNA-122 a were inhibited, and the differences were significant as compared with the control group(P < 0.05). Besides, the inhibition of miRNA-122 a group was the most significant and there was statistically significant difference as compared with miRNA-224 group(t =-4.694, P = 0.009). After the plasmids of target genes were transfected into A549 cells, the proportion of apoptotic cells increased, the invasive cells were decreased and the clone ability reduced, and also there was a significant difference as compared with those of the control group(P < 0.05). What's more, the apoptotic peak appeared in miRNA-122 a group. Its invasion ability decreased most obviously(40.25 ± 3.97/visual field), the number of clone ability was 104.93 ± 4.87 and the inhibitory effect was the most obviously. There was statistically significant difference as compared with other groups(P < 0.05). Conclusions: A549 cells transfected by ultrasound microbubble-mediated antisense miRNA-224 and mi RNA展开更多
文摘AIM: To assess the clinical value of contrast-enhanced intraoperative ultrasound (CE-IOUS) as a novel tool in partial hepatectomy for cirrhotic patients with hepatocellular carcinoma (HCC). METHODS: From January 2007 to September 2007, a total of 20 consecutive cirrhotic patients with HCC scheduled to undergo partial hepatectomy were studied. Preoperative contrast enhanced computer tomography (CT) and/or magnetic resonance (MR) scans were performed within 1-2 wk before operation. Intraoperative ultrasound (IOUS) and CE-IOUS were carried out after mobilization of the liver. Lesions on precontrast and postcontrast scans were counted and mapped. CE-IOUS was performed with intravenous injection of ultrasound contrast agents SonoVue (Bracco Imaging, Milan, Italy). Arterial, portal and late phases of contrast enhancement were recorded and analyzed. Nodules showing arterial phase hyper-enhancing and/or hypo-enhancing in late parenchymal phase were considered malignant and removed surgically. Ultrasound-guided biopsy and ethanol ablation would be an option if the nodule could not be removed surgically. Newly detected nodules on IOUS showing iso-enhancement in both arterial and late phases were considered benign. These nodules were either removed surgically if they were close to the main lesion or followed by examinations of alpha-fetoprotein (AFP) level and ultrasound and/or CT/MR every 3 too. RESULTS: IOUS found 41 nodules in total, among which 17 (41.46%) were newly detected compared to preoperative imaging. Thirty-three nodules were diagnosed malignant by CE-IOUS, including one missed by IOUS. The sensitivity and specificity of CE-IOUS on detecting HCC nodules are 100% (33/33 and 100% (9/9), respectively. Nine nodules were considered benign by CE-IOUS, four was confirmed at histology and five by follow-up. CE-IOUS changed the surgical strategy in 35% (7/20) of patients and avoid unnecessary intervention in 30% (6/20) of patients. CONCLUSION: CE-IOUS is a useful mea
基金Supported by National Natural Science Foundation of ChinaNo.81371570+3 种基金Key Project from Shanghai Health BureauNo.20114003Shanghai Talent Development Project from Shanghai Human Resource and Social Security BureauNo.2012045
文摘Microbubbles have been used for many years now in clinical practice as contrast agents in ultrasound imaging.Recently,their therapeutic applications have also attracted more attention.However,the short circulation time(minutes)and relatively large size(two to ten micrometers)of currently used commercial microbubbles do not allow effective extravasation into tumor tissue,preventing efficient tumor targeting.Fortunately,more multifunctional and theranostic nanoparticles with some special advantages over the traditional microbubbles have been widely investigated and explored for biomedical applications.The way to synthesize an ideal ultrasound contrast agent based on nanoparticles in order to achieve an expected effect on contrast imaging is a key technique.Currently a number of nanomaterials,including liposomes,polymers,micelles,dendrimers,emulsions,quantum dots,solid nanoparticles etc.,have already been applied to pre or clinical trials.Multifunctional and theranostic nanoparticles with some special advantages,such as the tumor-targeted(passive or active),multi-mode contrast agents(magnetic resonance imaging,ultrasonography or fluorescence),carrier or enhancer of drug delivery,and combined chemo or thermal therapy etc.,are rapidly gaining popularity and have shown a promising application in the field of cancer treatment.In this mini review,the trends and the advances of multifunctional and theranostic nanoparticles are briefly discussed.
基金the National Natural Science Foundation of China,No.30430230
文摘BACKGROUND: Studies have demonstrated that ultrasound-mediated microbubble destruction significantly improves transfection efficiency of enhanced green fluorescent protein (EGFP) in in vitro cultured retinal ganglial cells (RGCs). OBJECTIVE: To investigate the feasibility of ultrasound-mediated microbubble destruction for EGFP transfection in rat RGCs, and to compare efficiency and cell damage with traditional transfection methods. DESIGN, TIME AND SETTING: In vivo, gene engineering experiment. The study was performed at the Central Laboratory, Institute of Ultrasonic Imaging, Chongqing Medical University from March to July 2008. MATERIALS: Eukaryotic expression vector plasmid EGFP and microbubbles were prepared by the Institute of Ultrasonic Imaging, Chongqing Medical University. The microbubbles were produced at a concentration of 8.7 × 10^11/L, with a 2-4 μm diameter, and 10-hour half-life in vitro. METHODS: A total of 50 Sprague Dawley rats were randomly assigned to four groups. Normal controls (n = 5) were infused with 5 μL normal saline to the vitreous cavity; the naked plasmid group (n = 15) was infused with 5 pL EGFP plasmid to the vitreous cavity; in the plasmid with ultrasound group (n = 15), the eyes were irradiated with low-energy ultrasound wave (0.5 W/cm^2) for a total of 60 seconds (irradiated for 5 seconds, at 10-second intervals) immediately following infusion of EGFP plasmids to the vitreous cavities. In the microbubble-ultrasound group (n = 15), the eyes were irradiated with the same power of ultrasonic wave immediately following infusion of microbubbles containing EGFP plasmids to the vitreous cavities. MAIN OUTCOME MEASURES: After 7 days, retinal preparations and EGFP expression in RGCs were observed by fluorescence microscopy. RGC quantification in the retinal ganglion cell layer was performed. In addition, EGFP mRNA expression was semi-quantitatively determined by RT-PCR. RESULTS: The transfection efficiency of EGFP to RGCs by microbubbles wi
基金supported by Science and technology plan projects of Sichuan Province(Grant No.2015SZ0074)
文摘Objective: To explore the role of the abnormal expression of miRNAs in the development process of non-small cell lung cancer and the feasibility of ultrasound microbubble-mediated gene therapy after transfecting antisense miRNA-224 and miRNA-122 a plasmids into nonsmall cell lung cancer A549 cells. Methods: Antisense miRNA-224 and miRNA-122 a plasmids were transfected into non-small cell lung cancer A549 cells on the optimal ultrasound microbubble mediated condition. We set up a control group. The cell proliferation activity, apoptosis, invasion ability were detected by MTT assay, Annexin V-PE, Transwell invasion experiment and colony formation assay, respectively. Results: The expression of mi RNA-224 decreased and the expression of miRNA-122 a rose after the plasmids of target genes were transfected into non-small cell lung cancer A549 cells, and there were significant differences when compared with those of the control group(P<0.05). After the plasmids of target genes were transfected into A549 cells, the growth of antisense miRNA-224 and miRNA-122 a were inhibited, and the differences were significant as compared with the control group(P < 0.05). Besides, the inhibition of miRNA-122 a group was the most significant and there was statistically significant difference as compared with miRNA-224 group(t =-4.694, P = 0.009). After the plasmids of target genes were transfected into A549 cells, the proportion of apoptotic cells increased, the invasive cells were decreased and the clone ability reduced, and also there was a significant difference as compared with those of the control group(P < 0.05). What's more, the apoptotic peak appeared in miRNA-122 a group. Its invasion ability decreased most obviously(40.25 ± 3.97/visual field), the number of clone ability was 104.93 ± 4.87 and the inhibitory effect was the most obviously. There was statistically significant difference as compared with other groups(P < 0.05). Conclusions: A549 cells transfected by ultrasound microbubble-mediated antisense miRNA-224 and mi RNA