Today,Pt/C catalysts are widely used in proton exchange membrane fuel cells(PEMFCs).The practical applications of PEMFCs still face many limitations in the preparation of advanced Pt‐based catalysts,including high co...Today,Pt/C catalysts are widely used in proton exchange membrane fuel cells(PEMFCs).The practical applications of PEMFCs still face many limitations in the preparation of advanced Pt‐based catalysts,including high cost,limited life‐time,and insufficient power density.A kinetically sluggish oxygen reduction reaction(ORR)is primarily responsible for these issues.The development of advanced Pt‐based catalysts is crucial for solving these pro-blems when the large‐scale application of PEMFCs is to be realized.Herein,we demonstrate the design principle of advanced Pt‐based catalysts with an emphasis on theoretical understandings to practical applications.Generally,three main strategies(including strain effect,electronic effect,and ensemble effect)that governing the initial activity of Pt‐based electrocatalysts are ela-borated in detail in this review.Recent advanced Pt‐based ORR catalysts are summarized and we present representative achievements to further reveal the relationship of excellent ORR performance based on theoretical mechanisms.Then we focus on the preparation standards of membrane electrode assembles and testing protocols in practice.Finally,we predict the remaining challenges and present our perspectives with regards to design strategies for improving ORR performance of Pt‐based catalysts in the future.展开更多
The performance of proton exchange membrane fuel cells is heavily dependent on the microstructure of electrode catalyst especially at low catalyst loadings.This work shows a hybrid electrocatalyst consisting of PtNi-W...The performance of proton exchange membrane fuel cells is heavily dependent on the microstructure of electrode catalyst especially at low catalyst loadings.This work shows a hybrid electrocatalyst consisting of PtNi-W alloy nanocrystals loaded on carbon surface with atomically dispersed W sites by a two-step straightforward method.Single-atomic W can be found on the carbon surface,which can form protonic acid sites and establish an extended proton transport network at the catalyst surface.When implemented in membrane electrode assembly as cathode at ultra-low loading of 0.05 mgPt cm^(−2),the peak power density of the cell is enhanced by 64.4%compared to that with the commercial Pt/C catalyst.The theoretical calculation suggests that the single-atomic W possesses a favorable energetics toward the formation of*OOH whereby the intermediates can be efficiently converted and further reduced to water,revealing a interfacial cascade catalysis facilitated by the single-atomic W.This work highlights a novel functional hybrid electrocatalyst design from the atomic level that enables to solve the bottle-neck issues at device level.展开更多
Proton exchange membrane fuel cells(PEMFCs)have received a sustained world-wide attention owing to their promising applications based on clean energy.However,their widespread applications are still restricted by the s...Proton exchange membrane fuel cells(PEMFCs)have received a sustained world-wide attention owing to their promising applications based on clean energy.However,their widespread applications are still restricted by the sluggish oxygen reduction reaction(ORR)process.Over the past decades,significant efforts have been devoted to developing efficient ORR catalysts,which have been summarized in numerous previous reviews.Unfortunately,most of them mainly focused on ORR activity on the rotating disk electrode(RDE)level,which cannot truly represent the performance in real applications.Developing and showcasing efficient catalysts evaluated at the membrane electrode assembly(MEA)level is of vital importance.In this review,we first briefly showcased the recent development of ORR catalysts and then put more emphasis on the discussion of designing efficient catalysts at MEA and full-cell level,aiming to help stimulate more attention on their practical applications.展开更多
基金NSFC,Grant/Award Numbers:21871159,21890383National Key R&D Program of China,Grant/Award Numbers:2018YFA0702003,2016YFA0202801+2 种基金National Natural Science Foundation of China,Grant/Award Numbers:21890383,21671117,21871159Science and Technology Key Project of Guangdong Province of China,Grant/Award Number:2020B010188002Beijing Municipal Science&Technology Commission,Grant/Award Number:Z191100007219003。
文摘Today,Pt/C catalysts are widely used in proton exchange membrane fuel cells(PEMFCs).The practical applications of PEMFCs still face many limitations in the preparation of advanced Pt‐based catalysts,including high cost,limited life‐time,and insufficient power density.A kinetically sluggish oxygen reduction reaction(ORR)is primarily responsible for these issues.The development of advanced Pt‐based catalysts is crucial for solving these pro-blems when the large‐scale application of PEMFCs is to be realized.Herein,we demonstrate the design principle of advanced Pt‐based catalysts with an emphasis on theoretical understandings to practical applications.Generally,three main strategies(including strain effect,electronic effect,and ensemble effect)that governing the initial activity of Pt‐based electrocatalysts are ela-borated in detail in this review.Recent advanced Pt‐based ORR catalysts are summarized and we present representative achievements to further reveal the relationship of excellent ORR performance based on theoretical mechanisms.Then we focus on the preparation standards of membrane electrode assembles and testing protocols in practice.Finally,we predict the remaining challenges and present our perspectives with regards to design strategies for improving ORR performance of Pt‐based catalysts in the future.
基金Y.Li acknowledges the financial support from the National Natural Science Foundation of China(No.52171199)X.Ke acknowledges the financial support from the National Natural Science Foundation of China(No.12074017).
文摘The performance of proton exchange membrane fuel cells is heavily dependent on the microstructure of electrode catalyst especially at low catalyst loadings.This work shows a hybrid electrocatalyst consisting of PtNi-W alloy nanocrystals loaded on carbon surface with atomically dispersed W sites by a two-step straightforward method.Single-atomic W can be found on the carbon surface,which can form protonic acid sites and establish an extended proton transport network at the catalyst surface.When implemented in membrane electrode assembly as cathode at ultra-low loading of 0.05 mgPt cm^(−2),the peak power density of the cell is enhanced by 64.4%compared to that with the commercial Pt/C catalyst.The theoretical calculation suggests that the single-atomic W possesses a favorable energetics toward the formation of*OOH whereby the intermediates can be efficiently converted and further reduced to water,revealing a interfacial cascade catalysis facilitated by the single-atomic W.This work highlights a novel functional hybrid electrocatalyst design from the atomic level that enables to solve the bottle-neck issues at device level.
基金support by the Natural Science Foundation of Shandong Province(No.ZR202103040753)the National Natural Science Foundation of China(No.22102086).
文摘Proton exchange membrane fuel cells(PEMFCs)have received a sustained world-wide attention owing to their promising applications based on clean energy.However,their widespread applications are still restricted by the sluggish oxygen reduction reaction(ORR)process.Over the past decades,significant efforts have been devoted to developing efficient ORR catalysts,which have been summarized in numerous previous reviews.Unfortunately,most of them mainly focused on ORR activity on the rotating disk electrode(RDE)level,which cannot truly represent the performance in real applications.Developing and showcasing efficient catalysts evaluated at the membrane electrode assembly(MEA)level is of vital importance.In this review,we first briefly showcased the recent development of ORR catalysts and then put more emphasis on the discussion of designing efficient catalysts at MEA and full-cell level,aiming to help stimulate more attention on their practical applications.