通过地震反演数据识别岩性,是地震反演的一项基本任务.由于不同岩性的弹性参数范围常常存在一定程度的重叠,所以给岩性识别带来了很大的困难.本文以叠前反演的弹性参数为基础,通过马尔科夫随机场(Markov Random Field简写为MRF)建立先...通过地震反演数据识别岩性,是地震反演的一项基本任务.由于不同岩性的弹性参数范围常常存在一定程度的重叠,所以给岩性识别带来了很大的困难.本文以叠前反演的弹性参数为基础,通过马尔科夫随机场(Markov Random Field简写为MRF)建立先验模型,按照解释好的测井资料,对不同岩性的弹性参数进行统计,得到计算所需的参数,在贝叶斯(Bayesian)框架下建立岩性分类的目标函数,达到岩性识别的目的.通过马尔科夫随机场建立先验模型,能够建立相邻点间的相互作用关系,得到横向上延续的岩性剖面.本文使用一个楔形模型和Marmousi Ⅱ模型对该方法进行了测试,结果表明,该方法有效可行.同时,本文通过加入误差的方法,检验了反演存在误差对识别结果的影响.展开更多
国内外针对陆地水体信息提取、洪涝灾害快速响应方面具有较深入的研究,但是多采用发展较早、图像质量可靠的可见光影像及国外星载SAR影像。中国合成孔径雷达(SAR)卫星高分三号(GF-3)已获取了大量多极化、全极化SAR数据,为了将GF-3影像...国内外针对陆地水体信息提取、洪涝灾害快速响应方面具有较深入的研究,但是多采用发展较早、图像质量可靠的可见光影像及国外星载SAR影像。中国合成孔径雷达(SAR)卫星高分三号(GF-3)已获取了大量多极化、全极化SAR数据,为了将GF-3影像快速应用到环境保护、水资源管理等行业中,本研究分析了水体与其他目标具有的不同后向散射特性,将阈值分割法与马尔可夫随机场(MRF)相结合,发展了一种检测精度较高、自动化程度强的水体信息提取方法。该方法首先通过直方图统计的方法对不同成像模式、不同极化的GF-3影像进行后向散射强度分析,在阈值分割的研究基础上,比较了最大类间方差法(Otsu)和Kittler and Illingworth(KI)二值化法在水体-非水体分类中的效果。然后结合DEM和GF-3轨道参数排除因阴影现象产生的辐射失真对图像概率分布的影响,得到初始的水体信息分布图,再经过Fisher变换和马尔可夫随机场(MRF)的迭代运算,综合利用GF-3影像的多极化信息和空间上下文信息,以最大后验概率准则输出最终的水体分布图。利用了湖南省东北部不同成像模式的两景GF-3影像进行试验,在成像时间接近的光学影像中随机选择检验样点进行精度评价。实验结果表明,KI方法在GF-3水体提取应用中比Otsu方法具有更强的优势,剔除图像阴影区域后,自动化确定的阈值与目视解译阈值更加接近,通过MRF模型优化以后,实现了对水体信息的连贯提取,对图像噪声具有较强的抑制作用。本研究对水体目标的提取精度均达到了85%以上,实验结果精度优于基于光学影像的水体指数法,整个流程需要很少的人工经验参与,具有自动化程度强、检测精度高的优势。展开更多
该文研究了无监督遥感图像分类问题。文中构造了图像的隐马尔可夫随机场模型(HiddenMarkov Random Fleid,HMRF),并且提出了基于该模型的图像分类算法。该文采用有限高斯混合模型(Finite Gaussian Mixture,FGM)描述图像像素灰度的条件概...该文研究了无监督遥感图像分类问题。文中构造了图像的隐马尔可夫随机场模型(HiddenMarkov Random Fleid,HMRF),并且提出了基于该模型的图像分类算法。该文采用有限高斯混合模型(Finite Gaussian Mixture,FGM)描述图像像素灰度的条件概率分布,使用EM(Expectation-Maximization)算法解决从不完整数据中估计概率模型参数问题。针对遥感图像分布的不均匀特性,该文提出的算法没有采用固定的马尔可夫随机场模型参数,而是在递归分类算法中分级地调整模型参数以适应区域的变化。实验结果表明了该文算法的有效性,分类算法处理精度高于C-Means聚类算法.。展开更多
文摘通过地震反演数据识别岩性,是地震反演的一项基本任务.由于不同岩性的弹性参数范围常常存在一定程度的重叠,所以给岩性识别带来了很大的困难.本文以叠前反演的弹性参数为基础,通过马尔科夫随机场(Markov Random Field简写为MRF)建立先验模型,按照解释好的测井资料,对不同岩性的弹性参数进行统计,得到计算所需的参数,在贝叶斯(Bayesian)框架下建立岩性分类的目标函数,达到岩性识别的目的.通过马尔科夫随机场建立先验模型,能够建立相邻点间的相互作用关系,得到横向上延续的岩性剖面.本文使用一个楔形模型和Marmousi Ⅱ模型对该方法进行了测试,结果表明,该方法有效可行.同时,本文通过加入误差的方法,检验了反演存在误差对识别结果的影响.
文摘国内外针对陆地水体信息提取、洪涝灾害快速响应方面具有较深入的研究,但是多采用发展较早、图像质量可靠的可见光影像及国外星载SAR影像。中国合成孔径雷达(SAR)卫星高分三号(GF-3)已获取了大量多极化、全极化SAR数据,为了将GF-3影像快速应用到环境保护、水资源管理等行业中,本研究分析了水体与其他目标具有的不同后向散射特性,将阈值分割法与马尔可夫随机场(MRF)相结合,发展了一种检测精度较高、自动化程度强的水体信息提取方法。该方法首先通过直方图统计的方法对不同成像模式、不同极化的GF-3影像进行后向散射强度分析,在阈值分割的研究基础上,比较了最大类间方差法(Otsu)和Kittler and Illingworth(KI)二值化法在水体-非水体分类中的效果。然后结合DEM和GF-3轨道参数排除因阴影现象产生的辐射失真对图像概率分布的影响,得到初始的水体信息分布图,再经过Fisher变换和马尔可夫随机场(MRF)的迭代运算,综合利用GF-3影像的多极化信息和空间上下文信息,以最大后验概率准则输出最终的水体分布图。利用了湖南省东北部不同成像模式的两景GF-3影像进行试验,在成像时间接近的光学影像中随机选择检验样点进行精度评价。实验结果表明,KI方法在GF-3水体提取应用中比Otsu方法具有更强的优势,剔除图像阴影区域后,自动化确定的阈值与目视解译阈值更加接近,通过MRF模型优化以后,实现了对水体信息的连贯提取,对图像噪声具有较强的抑制作用。本研究对水体目标的提取精度均达到了85%以上,实验结果精度优于基于光学影像的水体指数法,整个流程需要很少的人工经验参与,具有自动化程度强、检测精度高的优势。
文摘该文研究了无监督遥感图像分类问题。文中构造了图像的隐马尔可夫随机场模型(HiddenMarkov Random Fleid,HMRF),并且提出了基于该模型的图像分类算法。该文采用有限高斯混合模型(Finite Gaussian Mixture,FGM)描述图像像素灰度的条件概率分布,使用EM(Expectation-Maximization)算法解决从不完整数据中估计概率模型参数问题。针对遥感图像分布的不均匀特性,该文提出的算法没有采用固定的马尔可夫随机场模型参数,而是在递归分类算法中分级地调整模型参数以适应区域的变化。实验结果表明了该文算法的有效性,分类算法处理精度高于C-Means聚类算法.。