期刊文献+

一种多智能体协同信息一致性算法 被引量:19

A cooperative information consensus algorithm for multi-agent system
原文传递
导出
摘要 以无人机(UAVs)/导弹集群为代表的多智能体协同作战在未来战场中占有重要地位。协同信息的共享和一致性是多智能体系统完成协同、编队、集结、同步等协同任务的关键基础和前提。首先,基于邻居系统和团势能建立了信息一致性模型,将多智能体的协同信息的偏差映射为团势能。然后,通过以并行能量最小化求解马尔可夫随机场最大后验概率的方法实现了分布式无中心条件下的协同信息一致性。与传统的一致性算法相比,所提出的算法引入了虚拟基准的概念。当无外部基准输入时,基于平均场方法,通过邻居之间的协同信息交互建立虚拟基准;当存在领航节点或虚拟领航节点时,将领航节点协同信息的状态及状态导数作为虚拟基准。仿真结果表明:所得出的算法具有对网络规模不敏感、快速收敛、高鲁棒性的优点;对有/无基准输入的情况可采用相同的算法,体现了算法具有较好的适应性。 Multi-agent cooperative operation plays an important role in the cyberspace war,and the main application lies in the field of multiple Unmanned Aerial Vehicles(UAVs)/multi-missile collaborative cluster.Sharing collaborative information and consistency are the foundation and prerequisite for the multi-agent to complete collaborative tasks such as coordination,formation,flocking and synchronization.A consensus information model is established based on the neighbor system and the cluster potential,and the bias of the cooperative information is mapped to the cluster potential energy.By using the minimization of parallel energy to solve the maximum a posteriori probability of the Markov random field,cooperative information reaches a consensus with distributed and non center condition.Different from the traditional consensus algorithm,the algorithm proposed introduces the concept of virtual reference.A virtual reference is established by cooperative information interaction among the neighbors by using the mean field theory with no external reference input.When the pilot node or the virtual pilot node exists,the state and its derivative of the pilot node cooperative information are used as the virtual reference.Simulation results show that the proposed algorithm has the advantages of insensitivity to network scale,fast convergence and high robustness.The algorithm can be also used in the presence/absence of reference input,meaning that the algorithm has great adaptability.
出处 《航空学报》 EI CAS CSCD 北大核心 2017年第12期209-221,共13页 Acta Aeronautica et Astronautica Sinica
基金 陕西省重点研发计划(2017GY-069)~~
关键词 多智能体 一致性 马尔可夫随机场 平均场 虚拟基准 multi-agent consensus Markov random field mean field virtual reference
  • 相关文献

参考文献7

  • 1刘瑞芳..图的最小特征根和拉普拉斯谱半径[D].华东师范大学,2010:
  • 2汪天飞,李彬.图的最大拉普拉斯特征值的上界[J].四川师范大学学报(自然科学版),2007,30(2):191-193. 被引量:7
  • 3吴森堂著..导弹自主编队协同制导控制技术[M].北京:国防工业出版社,2015:339.
  • 4曾斌,姚路,魏军.基于平均场模型的传感器网络信息共享算法研究[J].传感技术学报,2009,22(10):1486-1491. 被引量:1
  • 5丁尚文..图的最大和次小拉普拉斯特征值[D].电子科技大学,2008:
  • 6张庆杰..基于一致性理论的多UAV分布式协同控制与状态估计方法[D].国防科学技术大学,2011:
  • 7王寅秋..非线性多智能体系统一致性分布式控制[D].北京理工大学,2015:

二级参考文献21

  • 1乔永团,王宝树.传感器网络在网络中心战中的应用[J].指挥控制与仿真,2006,28(1):85-88. 被引量:2
  • 2Isomura, M. Riedel T, Decker, C. Sharing Sensor Networks [C]//Proceedings of the 26th IEEE International Conference on Distributed Computing Systems Workshops(ICDCSW'06), 2006:61-66. 被引量:1
  • 3Ruan Y, Will ett P, Marts A, Palmier F, and Marano S, Practical Fusion of Quantized Measurements Via Particle Filtering[J], IEEE Transactions on Aerospace and Electronic Systems, 2008,44(1): 15-2. 被引量:1
  • 4Bourgault F, Furukawa T, Durrant-Whyte F, Hugh. Decentralized Bayesian Negotiation for Cooperative Search[C]//2004 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS), September, 2004,3 : 2681-2686. 被引量:1
  • 5Alex H, Kumar M, and Shirazi B. MidFusion: An Adaptive Middleware for Information Fusion in Sensor Network Applications[J], Information Fusion, 2008,9 (3): 332-343. 被引量:1
  • 6Jin Z and Murray R M, Multi-hop Relay Protocols for Fast Consensus Seeking[C]//Proceedings of the IEEE Conference on Decision and Control. San Diego, CA, United states:Institute of Electrical and Electronics Engineers Inc. , December 2006: 1001-1006. 被引量:1
  • 7Guozhu W, Hailing M, Liu Jing. Ground-State Magnetic Properties of the Spin-2 Transverse Lsing Model[J]. Journal of Magnetism and Magnetic Materials, 2008,320 (6) : 1151-1156. 被引量:1
  • 8Lancichinetti A, Fortunato S, and Radicchi F. Benchmark Graphs for Testing Community Detection Algorithms [J], Physical Review E-Statistical, Nonlinear, and Soft Matter Physics,2008,78(4) : 93 - 114. 被引量:1
  • 9Chuleui H. A Distributed Hybrid Heuristics of Mean Field Annealing and Genetic Algorithm for Load Balancing Problem [C]//in Proceedings of 5th International Conference of Rough Sets and Current Trends in Computing, RSCTC 2006, November 2006 : 726-735. 被引量:1
  • 10Alessandro P, Giuseppe A, Andrea R. A Monte Carlo Investi gation of the Harniltonian Mean Field Model[J]. Physica A Statistical Mechanics and its Applications, 2005, 349 (1): 143-154. 被引量:1

共引文献6

同被引文献189

引证文献19

二级引证文献145

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部