The interplay between chemistry and interfacial-tension-driven hydrodynamic instabilities has been studied experimentally. The system on hand consists of two immiscible liquids separated along an initially plane inter...The interplay between chemistry and interfacial-tension-driven hydrodynamic instabilities has been studied experimentally. The system on hand consists of two immiscible liquids separated along an initially plane interface at which an interfacial reaction takes place to produce in situ a surfactant. It is identified that the dynamics of the system depends on the orientation of the Hele-Shaw cell with respect to the vector of gravity. If the nele-Shaw cell is placed vertically, Marangoni cells with vigorous convection develop in both phases along a nearly planar interface. However, if the Hele-Shaw cell is tilted off the gravity, the instabilities in the system are characterized by the large scale interracial deformation with a spatio-temporal periodicity together with the chemo-Marangoni convection. The focus is on the exploration of the transition from the cellular mode to the large scale interfacial deformation.展开更多
In this paper, thickness uniformity of poly(9,9-di-n-octylfluorene) films patterned by inkjet printing was im- proved by the use of solvent mixtures (a solvent with higher volatility, higher surface energy and lowe...In this paper, thickness uniformity of poly(9,9-di-n-octylfluorene) films patterned by inkjet printing was im- proved by the use of solvent mixtures (a solvent with higher volatility, higher surface energy and lower viscosity, with another solvent with lower volatility, lower surface energy and higher viscosity). The average thickness of inkjet printed poly(9,9-di-n-octylfluorene) films was increased from ca. 30 nm to ca. 100 nm when solvent mixtures were used instead of pure chlorobenzene. More flat PFO films were formed instead of the original films with con- cave-lens like cross-section formed by coffee ring effect. This improvement was explained by combination of in- tense Marangoni flow at early drying process and weak complementary flow at the later drying process formed in the solvent mixture. Patterned poly(9,9-di-n-octylfluorene) films were used for fabrication of electroluminescence devices with improved electronic property. Array of pixels with about 80% effective light-emitting area was ob- tained.展开更多
Using synchrotron X-ray imaging technique,the segregation evolution in solidifying Al-10 wt% Bi immiscible alloys was investigated at different cooling rates.Irrespective of the cooling rate,most of the Bi solute appe...Using synchrotron X-ray imaging technique,the segregation evolution in solidifying Al-10 wt% Bi immiscible alloys was investigated at different cooling rates.Irrespective of the cooling rate,most of the Bi solute appeared at the upper part of the sample after solidification.The reason for this Bi enrichment phenomenon is different for different cooling rates.Besides Marangoni motion,positive segregation,which has rarely been noticed before,can also make Bi solute transfer to the hot top zone.It is also found that,bubbles(or pores) appear in solidifying Al-10 wt% Bi alloys,and the number of bubbles(or pores) increases with the increase of the cooling rate,while the size of the bubbles(or pores) decreases.展开更多
The stationary gas tungsten arc welding (GTA) is carried out on SUS304 stainless steel under Ar-0.1%O2 and Ar-0.3%O2 mixed shielding to observe the evolution of the molten pool and investigate the role of Marangoni ...The stationary gas tungsten arc welding (GTA) is carried out on SUS304 stainless steel under Ar-0.1%O2 and Ar-0.3%O2 mixed shielding to observe the evolution of the molten pool and investigate the role of Marangoni convection on the weld shape. After welding, the oxygen content in the weld metal was measured by using an oxygen/nitrogen analyzer. Small addition of oxygen to the argon based shielding gas can effectively adjust the weld pool oxygen content. Oxygen plays an important role as an surface active element in determining the pattern of Marangoni convection in the stainless steel weld pool. When the weld metal oxygen content is over the critical value, 0.01 wt pct, corresponding to the Ar-0.3%O2 mixed shielding gas, the Marangoni convection changes from outward to inward direction and the weld shape dramatically changes from wide shallow shape to narrow deep shape.展开更多
The Marangoni effect induced by mass transfer at the interface between two immiscible liquids displays important influence on laboratory and industrial operation of solvent extraction. A systematic numerical study of ...The Marangoni effect induced by mass transfer at the interface between two immiscible liquids displays important influence on laboratory and industrial operation of solvent extraction. A systematic numerical study of the two-dimensional Marangoni effect in a two liquid layer system was conducted. The linear relationship of the inter- facial tension versus the solute concentration was incorporated into a mathematical model accounting for liquid flow and mass transfer in both phases. The typical cases analyzed by Sternling & Scriven (AIChE J., 1959) using the linear instability theory were simulated bv the finite difference method and good agreement between the theory and the numerical simulation was observed. The simulation suggests that the Marangoni convection needs certain time to develop sufficiently in strength and scale to enhance the interphase mass transfer, the Marangoni effect is dynamic and transient, and remains at some stabilized level as long as the mass transfer driving force is kept con- stant. When certain level of shear is imposed at the interface as in most cases of practical significance, the Maran- goni effect is suppressed slightly but progressively as the shear is increased gradually. The present two-dimensional simulation of the Marangoni effect provides some insight into the underlying mechanism and also the basis for further theoretical study of the three-dimensional Marangoni effect in the real world and in chemical engineering applications.展开更多
The mathematical model of mass transfer-induced Marangoni effect is formulated. The drop surface evolution is captured by the level set method, in which the interface is represented by the embedded set of zero level o...The mathematical model of mass transfer-induced Marangoni effect is formulated. The drop surface evolution is captured by the level set method, in which the interface is represented by the embedded set of zero level of a scalar distance function defined in the whole computational domain. Numerical simulation of the Marangoni effect induced by interphase mass transfer to/from deformable single drops in unsteady motion in liquid-liquid extraction systems is performed in a Eulerian axisymmetric reference frame. The occurrence and development of the Marangoni effect are simulated, and the re- sults are in good agreement with the classical theoretical analysis and previous simulation.展开更多
Marangoni convection and its influence on the mass transter in the liquid phase were investigated. Marangoni convection was visualized using laser Schlieren technique, Orderly polygonal convection patterns and random ...Marangoni convection and its influence on the mass transter in the liquid phase were investigated. Marangoni convection was visualized using laser Schlieren technique, Orderly polygonal convection patterns and random interfacial turbulence were observed. The effect of Marangoni convection on the mass transfer rate was studied by desorbing ethanol from aqneous solution in the falling film. The experimental results show that Marangoni convection can speed up the surface real and enhance the mass transfer rate in the liquid phase.The liquid mass transfer coefficient can be enhanced by as much as 3 folds. The corresponding empirical correlations are given in terms of the mass transfer enhancement factor. Furthermore, in considering the Marangoni effect, the conventional mass transfer correlation was modified, The differences between the values predicted by the correlation and the experimental data are within ±8.2% and the average difference is 4.2%.展开更多
An experimental investigation was conducted on subcooled nucleate boiling on ultra-small wires having diameters of 25―100 μm. High-speed photography and laser PIV (Particle Image Velocimetry) technology were used to...An experimental investigation was conducted on subcooled nucleate boiling on ultra-small wires having diameters of 25―100 μm. High-speed photography and laser PIV (Particle Image Velocimetry) technology were used to visually observe the bubble dynamics. For highly subcooled boiling at moderate heat fluxes, the bubbles generally remained attached to the micro heating wires and bubble-top jet flows were clearly observed. Smaller bubbles usually had stronger bubble-top jet flows, while larger bubbles seemed to produce multi-jet flows. The structures of the bubble-top jet flows, as well as multi-jet flows, were proposed from the experimental observation. A model was developed to describe jet flow phenomena from bubbles on micro wires. Numerical simulations for bubbles having diameter of 0.03 and 0.06 mm showed that both the bubble-top and multi-jet flows were induced by a strong Marangoni effect due to high temperature gradients near the wire. The predicted velocity magnitudes and flow structures agreed very well with experimental measurements. The bubble size relative to the wire is an important factor affecting the jet flow structure. For a 0.03 mm bubble on a 0.1 mm wire, only a bubble-top jet flow forms, while a complex multi-jet flow pattern forms around the bubble with a weak bubble-top jet and two side jet flows for a 0.06 mm bubble.展开更多
Lithium heat pipes have broad applications in heat pipe cooling reactors and hypersonic vehicles owing to their ultra-high working temperature.In particular,when the length of the lithium heat pipe is ultra-long,the f...Lithium heat pipes have broad applications in heat pipe cooling reactors and hypersonic vehicles owing to their ultra-high working temperature.In particular,when the length of the lithium heat pipe is ultra-long,the flow and heat transfer characteristics are more complex.In this study,an improved lumped parameter model that considers the Marangoni effect,bending effect,and different vapor flow patterns and Mach numbers was developed.Thereafter,the proposed model was verified using the University of New Mexico’s Heat Pipe and HTPIPE models.Finally,the verified model was applied to simulate the steady-state operation of an ultra-long lithium heat pipe in a Heat PipeSegmented Thermoelectric Module Converters space reactor.Based on the results:(1)Vapor thermal resistance was dominant at low heating power and decreased with increasing heating power.The vapor flow inside the heat pipe developed from the laminar to the turbulent phase,whereas the liquid phase in the heat pipe was always laminar.(2)The vapor pressure drop caused by bending was approximately 22–23%of the total,and the bending effect on the liquid pressure drop could be ignored.(3)The Marangoni effect reduced the capillary limit by hindering the liquid reflux,especially at low vapor temperatures.Without considering the Marangoni effect,the capillary limit of the lithium heat pipe was overestimated by 9%when the vapor temperature was 1400 K.(4)The total thermal resistance of the heat pipe significantly increased with increasing adiabatic length when the vapor temperature was low.Further,the wick dryness increased with increasing adiabatic length at any vapor temperature.Such findings improve on current knowledge for the optimal design and safety analysis of a heat pipe reactor,which adopts ultra-long lithium heat pipes.展开更多
A multi-physics numerical model was developed to investigate the influence of a steady magnetic field during partial penetration keyhole laser beam welding of an aluminum plate in fiat position.Three-dimensional heat ...A multi-physics numerical model was developed to investigate the influence of a steady magnetic field during partial penetration keyhole laser beam welding of an aluminum plate in fiat position.Three-dimensional heat transfer, fluid dynamics including phase transition and electromagnetic field partial differential equations were solved with the finite element differential equation solver COMSOL Multiphysics.The magnetic field was aligned perpendicularly to the welding direction.The main objective of these simulations was to estimate the critical value of the magnetic field needed to suppress convective flows in the weld pool during high-power(up to 20 kW)laser beam welding of aluminum alloys with up to 20 mm deep weld pool.It reveals that steady magnetic fields with corresponding Hartmann numbers Ha2-104 based on the half-width of the weld pool can effectively suppress convective flows in the weld pool.Moreover,the typically occurring wineglass-shape of the weld cross section caused by thermo-capillary flow is weakened.展开更多
A series of water-based conductive carbon pastes were prepared by wet ball milling, followed by vacuum defoaming using isopropyl alcohol, propylene glycol or glycerin as co-solvents. Screen printing was then used to p...A series of water-based conductive carbon pastes were prepared by wet ball milling, followed by vacuum defoaming using isopropyl alcohol, propylene glycol or glycerin as co-solvents. Screen printing was then used to prepare conductive patterns. To determine the influence of co-solvent hydroxyl group number on the properties of water-based conductive carbon pastes, the rheological properties of the pastes and the surface morphologies and conductivities of the printed patterns were characterized. The results show that paste viscosity increased with the number of hydroxyl groups and the latter also affected thixotropy. In addition, the boiling points and surface tensions of the co-solvents increased consistently with hydroxyl group number, affecting the hydrodynamic flow. The conductive carbon paste created using propylene glycol as a co-solvent was the best for screen printing because of its weak coffee-ring effect and appro- priate rheological properties, resulting in a smooth coating surface and uniform deposition of the fillers. The resistivity of the pattern printed using paste PG, containing the closest packing of conductive carbon black particles, was 0.44 Ω cm.展开更多
The entrapment behavior of Ar bubbles onto the solidifying front of molten steel in the continuous casting mold was investigated. The dynamic model of bubble and particle entrapment was developed in order to consider ...The entrapment behavior of Ar bubbles onto the solidifying front of molten steel in the continuous casting mold was investigated. The dynamic model of bubble and particle entrapment was developed in order to consider the effect of surface tension gradient induced forces(Marangoni force) due to the gradient of sulfur concentration and temperature. The numerical analysis and water model experiment were performed to apply the present model for various conditions. The calculation result is compared with experimental results and plant data in continuous casting mold as well. It shows that the thermal Marangoni force could play an important role and this model predicts the bubble behavior in the vicinity of solid/liquid interface more precisely.展开更多
基金Deutsche Forschung Gemainschaft(Ec/201/1-5)Deutsches Zentrum fuer Luft und Raumfahrt(50WM0058).
文摘The interplay between chemistry and interfacial-tension-driven hydrodynamic instabilities has been studied experimentally. The system on hand consists of two immiscible liquids separated along an initially plane interface at which an interfacial reaction takes place to produce in situ a surfactant. It is identified that the dynamics of the system depends on the orientation of the Hele-Shaw cell with respect to the vector of gravity. If the nele-Shaw cell is placed vertically, Marangoni cells with vigorous convection develop in both phases along a nearly planar interface. However, if the Hele-Shaw cell is tilted off the gravity, the instabilities in the system are characterized by the large scale interracial deformation with a spatio-temporal periodicity together with the chemo-Marangoni convection. The focus is on the exploration of the transition from the cellular mode to the large scale interfacial deformation.
基金This work was subsidized by the National Natural Science Foundation of China,the Ministry of Science and Technology of China
文摘In this paper, thickness uniformity of poly(9,9-di-n-octylfluorene) films patterned by inkjet printing was im- proved by the use of solvent mixtures (a solvent with higher volatility, higher surface energy and lower viscosity, with another solvent with lower volatility, lower surface energy and higher viscosity). The average thickness of inkjet printed poly(9,9-di-n-octylfluorene) films was increased from ca. 30 nm to ca. 100 nm when solvent mixtures were used instead of pure chlorobenzene. More flat PFO films were formed instead of the original films with con- cave-lens like cross-section formed by coffee ring effect. This improvement was explained by combination of in- tense Marangoni flow at early drying process and weak complementary flow at the later drying process formed in the solvent mixture. Patterned poly(9,9-di-n-octylfluorene) films were used for fabrication of electroluminescence devices with improved electronic property. Array of pixels with about 80% effective light-emitting area was ob- tained.
基金financially supported by the National Natural Science Foundation of China(Nos.51027005,51271119 and51574165)Shanghai Science&Technology Committee(No.11JC1405900)
文摘Using synchrotron X-ray imaging technique,the segregation evolution in solidifying Al-10 wt% Bi immiscible alloys was investigated at different cooling rates.Irrespective of the cooling rate,most of the Bi solute appeared at the upper part of the sample after solidification.The reason for this Bi enrichment phenomenon is different for different cooling rates.Besides Marangoni motion,positive segregation,which has rarely been noticed before,can also make Bi solute transfer to the hot top zone.It is also found that,bubbles(or pores) appear in solidifying Al-10 wt% Bi alloys,and the number of bubbles(or pores) increases with the increase of the cooling rate,while the size of the bubbles(or pores) decreases.
文摘The stationary gas tungsten arc welding (GTA) is carried out on SUS304 stainless steel under Ar-0.1%O2 and Ar-0.3%O2 mixed shielding to observe the evolution of the molten pool and investigate the role of Marangoni convection on the weld shape. After welding, the oxygen content in the weld metal was measured by using an oxygen/nitrogen analyzer. Small addition of oxygen to the argon based shielding gas can effectively adjust the weld pool oxygen content. Oxygen plays an important role as an surface active element in determining the pattern of Marangoni convection in the stainless steel weld pool. When the weld metal oxygen content is over the critical value, 0.01 wt pct, corresponding to the Ar-0.3%O2 mixed shielding gas, the Marangoni convection changes from outward to inward direction and the weld shape dramatically changes from wide shallow shape to narrow deep shape.
基金Supported by the National Natural Science Foundation of China (20490206, 20576133, 20676134) and Petro China.
文摘The Marangoni effect induced by mass transfer at the interface between two immiscible liquids displays important influence on laboratory and industrial operation of solvent extraction. A systematic numerical study of the two-dimensional Marangoni effect in a two liquid layer system was conducted. The linear relationship of the inter- facial tension versus the solute concentration was incorporated into a mathematical model accounting for liquid flow and mass transfer in both phases. The typical cases analyzed by Sternling & Scriven (AIChE J., 1959) using the linear instability theory were simulated bv the finite difference method and good agreement between the theory and the numerical simulation was observed. The simulation suggests that the Marangoni convection needs certain time to develop sufficiently in strength and scale to enhance the interphase mass transfer, the Marangoni effect is dynamic and transient, and remains at some stabilized level as long as the mass transfer driving force is kept con- stant. When certain level of shear is imposed at the interface as in most cases of practical significance, the Maran- goni effect is suppressed slightly but progressively as the shear is increased gradually. The present two-dimensional simulation of the Marangoni effect provides some insight into the underlying mechanism and also the basis for further theoretical study of the three-dimensional Marangoni effect in the real world and in chemical engineering applications.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 20490206 & 20576133, 50404009)PetroChina and the National Basic Research Program of China (Grant Nos. 2004CB619203, 2004CB619203)
文摘The mathematical model of mass transfer-induced Marangoni effect is formulated. The drop surface evolution is captured by the level set method, in which the interface is represented by the embedded set of zero level of a scalar distance function defined in the whole computational domain. Numerical simulation of the Marangoni effect induced by interphase mass transfer to/from deformable single drops in unsteady motion in liquid-liquid extraction systems is performed in a Eulerian axisymmetric reference frame. The occurrence and development of the Marangoni effect are simulated, and the re- sults are in good agreement with the classical theoretical analysis and previous simulation.
基金Supported by National Natural Science Foundation of China(No.20136010).
文摘Marangoni convection and its influence on the mass transter in the liquid phase were investigated. Marangoni convection was visualized using laser Schlieren technique, Orderly polygonal convection patterns and random interfacial turbulence were observed. The effect of Marangoni convection on the mass transfer rate was studied by desorbing ethanol from aqneous solution in the falling film. The experimental results show that Marangoni convection can speed up the surface real and enhance the mass transfer rate in the liquid phase.The liquid mass transfer coefficient can be enhanced by as much as 3 folds. The corresponding empirical correlations are given in terms of the mass transfer enhancement factor. Furthermore, in considering the Marangoni effect, the conventional mass transfer correlation was modified, The differences between the values predicted by the correlation and the experimental data are within ±8.2% and the average difference is 4.2%.
基金This work was supported by the National Natural Science Foundation of China(Grant No,5997601 6)the Graduate Foundation of Tsinghua University.
文摘An experimental investigation was conducted on subcooled nucleate boiling on ultra-small wires having diameters of 25―100 μm. High-speed photography and laser PIV (Particle Image Velocimetry) technology were used to visually observe the bubble dynamics. For highly subcooled boiling at moderate heat fluxes, the bubbles generally remained attached to the micro heating wires and bubble-top jet flows were clearly observed. Smaller bubbles usually had stronger bubble-top jet flows, while larger bubbles seemed to produce multi-jet flows. The structures of the bubble-top jet flows, as well as multi-jet flows, were proposed from the experimental observation. A model was developed to describe jet flow phenomena from bubbles on micro wires. Numerical simulations for bubbles having diameter of 0.03 and 0.06 mm showed that both the bubble-top and multi-jet flows were induced by a strong Marangoni effect due to high temperature gradients near the wire. The predicted velocity magnitudes and flow structures agreed very well with experimental measurements. The bubble size relative to the wire is an important factor affecting the jet flow structure. For a 0.03 mm bubble on a 0.1 mm wire, only a bubble-top jet flow forms, while a complex multi-jet flow pattern forms around the bubble with a weak bubble-top jet and two side jet flows for a 0.06 mm bubble.
基金the CASHIPS Director’s Fund(No.YZJJ2021QN36)the Key Research Program of the Chinese Academy of Sciences(No.ZDRW-KT-2019-1-0202).
文摘Lithium heat pipes have broad applications in heat pipe cooling reactors and hypersonic vehicles owing to their ultra-high working temperature.In particular,when the length of the lithium heat pipe is ultra-long,the flow and heat transfer characteristics are more complex.In this study,an improved lumped parameter model that considers the Marangoni effect,bending effect,and different vapor flow patterns and Mach numbers was developed.Thereafter,the proposed model was verified using the University of New Mexico’s Heat Pipe and HTPIPE models.Finally,the verified model was applied to simulate the steady-state operation of an ultra-long lithium heat pipe in a Heat PipeSegmented Thermoelectric Module Converters space reactor.Based on the results:(1)Vapor thermal resistance was dominant at low heating power and decreased with increasing heating power.The vapor flow inside the heat pipe developed from the laminar to the turbulent phase,whereas the liquid phase in the heat pipe was always laminar.(2)The vapor pressure drop caused by bending was approximately 22–23%of the total,and the bending effect on the liquid pressure drop could be ignored.(3)The Marangoni effect reduced the capillary limit by hindering the liquid reflux,especially at low vapor temperatures.Without considering the Marangoni effect,the capillary limit of the lithium heat pipe was overestimated by 9%when the vapor temperature was 1400 K.(4)The total thermal resistance of the heat pipe significantly increased with increasing adiabatic length when the vapor temperature was low.Further,the wick dryness increased with increasing adiabatic length at any vapor temperature.Such findings improve on current knowledge for the optimal design and safety analysis of a heat pipe reactor,which adopts ultra-long lithium heat pipes.
基金Item Sponsored by the Deutsche Forschungsgemeinschaft (BonnGermany) Under Grant No.DFG GU 1211/2-1
文摘A multi-physics numerical model was developed to investigate the influence of a steady magnetic field during partial penetration keyhole laser beam welding of an aluminum plate in fiat position.Three-dimensional heat transfer, fluid dynamics including phase transition and electromagnetic field partial differential equations were solved with the finite element differential equation solver COMSOL Multiphysics.The magnetic field was aligned perpendicularly to the welding direction.The main objective of these simulations was to estimate the critical value of the magnetic field needed to suppress convective flows in the weld pool during high-power(up to 20 kW)laser beam welding of aluminum alloys with up to 20 mm deep weld pool.It reveals that steady magnetic fields with corresponding Hartmann numbers Ha2-104 based on the half-width of the weld pool can effectively suppress convective flows in the weld pool.Moreover,the typically occurring wineglass-shape of the weld cross section caused by thermo-capillary flow is weakened.
文摘A series of water-based conductive carbon pastes were prepared by wet ball milling, followed by vacuum defoaming using isopropyl alcohol, propylene glycol or glycerin as co-solvents. Screen printing was then used to prepare conductive patterns. To determine the influence of co-solvent hydroxyl group number on the properties of water-based conductive carbon pastes, the rheological properties of the pastes and the surface morphologies and conductivities of the printed patterns were characterized. The results show that paste viscosity increased with the number of hydroxyl groups and the latter also affected thixotropy. In addition, the boiling points and surface tensions of the co-solvents increased consistently with hydroxyl group number, affecting the hydrodynamic flow. The conductive carbon paste created using propylene glycol as a co-solvent was the best for screen printing because of its weak coffee-ring effect and appro- priate rheological properties, resulting in a smooth coating surface and uniform deposition of the fillers. The resistivity of the pattern printed using paste PG, containing the closest packing of conductive carbon black particles, was 0.44 Ω cm.
文摘The entrapment behavior of Ar bubbles onto the solidifying front of molten steel in the continuous casting mold was investigated. The dynamic model of bubble and particle entrapment was developed in order to consider the effect of surface tension gradient induced forces(Marangoni force) due to the gradient of sulfur concentration and temperature. The numerical analysis and water model experiment were performed to apply the present model for various conditions. The calculation result is compared with experimental results and plant data in continuous casting mold as well. It shows that the thermal Marangoni force could play an important role and this model predicts the bubble behavior in the vicinity of solid/liquid interface more precisely.