期刊文献+

固定汽泡周围的温度场分布 被引量:4

Temperature distributions around stationary vapor bubbles
原文传递
导出
摘要 为估计M arangon i对流和自然对流对汽泡周围流场的影响,对加热面朝上和朝下的不同大小和过冷度的汽泡周围温度场进行了测量。通过比较测量所得温度场和带N av ier-S tokes方程的数值模拟结果可知,在完全没有浮升力时,M arangon i流会使得流场呈现一个向下的类似于射流的形状,但有了浮升力,向下的流动会立刻转向上,在加热表面附近形成涡流。即使加热面朝下,这种浮升力引起的自然对流依然影响整个流场,以至于这个系统不能很好地表现在微重力条件下的汽泡周围的流场。 The temperature distributions around vapor bubbles both on top of and underneath a heated surface were measured for different bubble sizes and different subcoolings to evaluate the effect of Marangoni flow and natural convection the flow field around vapor bubbles. Comparison of the measured temperature distributions to numerical solutions of the Navier-Stokes equations showed that even on the underside of a heated plate, the buoyancy of the heated flow significantly affects the overall flow field. Without buoyancy, the Marangoni flow should create a large plume downward from the bubble, but with buoyancy, the plume quiokly turns upward as the flow recirculates near the heated surface. Therefore, the buoyancy flow around a vapor bubble on the underside of a heated plate is significant enough that such a system is not an adequate representation of flows around vapor bubbles in microgravity where only Marangoni convection and evaporation/condensation induced flows are significant.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第2期218-221,共4页 Journal of Tsinghua University(Science and Technology)
基金 国家教育振兴计划项目(081202300)
关键词 蒸汽理论 过冷沸腾 汽泡 MARANGONI steam theory subcooled boiling vapor bubbles Marangoni
  • 相关文献

参考文献8

  • 1Betz J,Straub J.Experimental study and numerical simulation of thermocapillary convection around gas bubbles[A].Proc 5th Int Symp Heat Transfer[C].Beijing,2000.285-292. 被引量:1
  • 2Straub J,Winter J,Picker G.Boiling on a miniature heater under microgravity-A simulation for cooling of electronic devices[J].ASME Heat Transfer Div Publ HTD,1997,305:61-69. 被引量:1
  • 3Hein S,Ikier C,Klein H,et al.Bubble motion induced by Marangoni convection under the influence of gravity[J].Chemical Engineering Tech,1998,21:41-44. 被引量:1
  • 4黄勇军..微重力下液体沸腾机理探讨[D].清华大学,1999:
  • 5ChristopherD.M.,彭晓峰,王补宣.微重力下凝结和沸腾着的汽泡周围流场[J].工程热物理学报,1997,18(6):713-716. 被引量:2
  • 6PENG Xiaofeng,WANG Buxuan,Christopher D M.Some fundamentals of boiling in microgravity[A].Proc 5th Int Symp Heat Transfer[C].Beijing,2000.60-76. 被引量:1
  • 7WANG Hao,PENG Xiaofeng,LIN W K,et al.Bubble-top jet flow on micro wires[J].Int J Heat Mass Transfer,2004,47:2891-2900. 被引量:1
  • 8Marek R,Straub J.The origin of thermocapillary convection in subcooled nucleate boiling[J].Int J Heat Mass Transfer,2001,44:619-632. 被引量:1

二级参考文献1

  • 1柯道友,第六届高校工程热物理学术会议论文集,1996年 被引量:1

共引文献1

同被引文献41

  • 1杨卫.电致失效力学[J].力学进展,1996,26(3):338-352. 被引量:17
  • 2蔡勇,马东军,孙德军,尹协远.二维不可压缩流体界面的数值模拟[J].中国科学技术大学学报,2006,36(6):641-645. 被引量:2
  • 3赵建福,万士昕,刘刚.过冷池沸腾落塔短时微重力实验研究[J].工程热物理学报,2007,28(1):98-100. 被引量:4
  • 4郭英军,孙丽华,梁永春,孙会琴,冉海潮.电缆热老化寿命的预测研究[J].河北科技大学学报,2007,28(1):34-36. 被引量:19
  • 5陈之航.气液两相流动和传热[M].北京:机械工业出版社,1983. 被引量:2
  • 6Lee D J. Bubble departure radius under microgravity [J]. Chemical Engineering Communications, 1992, 117(1) : 175-189. 被引量:1
  • 7Zhao J F, Liu G, Wan S X, et al. Bubble dynamics in nucleate pool boiling on thin wires in microgravity[J]. Microgravity Science and Technology, 2008, 20(2): 81 89. 被引量:1
  • 8Bhunia A, Kamotani Y. Flow around a bubble on a heated wall in a cross-flowing liquid under microgravity condition[J]. International Journal of Heat and Mass Transfer, 2001, 44:3 895-3 905. 被引量:1
  • 9Siegel R, Keshock E G. Effects of reduced gravity on nucleate boiling bubble dynamics in saturated water [J]. AIChE Journal, 1963, 10 (4): 509-517. 被引量:1
  • 10Iguchi M, Terauchi Y. Microgravity effects on the rising velocity of bubbles and slugs in vertical pipes of good and poor wettability[J]. International Journal of Multiphase Flow, 2001, 27:2 189-2 198. 被引量:1

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部