Remote monitoring of transmission lines of a power system is significant for improved reliability and stability during fault conditions and protection system breakdowns.This paper proposes a smart backup monitoring sy...Remote monitoring of transmission lines of a power system is significant for improved reliability and stability during fault conditions and protection system breakdowns.This paper proposes a smart backup monitoring system for detecting and classifying the type of transmission line fault occurred in a power grid.In contradiction to conventional methods,transmission line fault occurred at any locality within power grid can be identified and classified using measurements from phasor measurement unit(PMU)at one of the generator buses.This minimal requirement makes the proposed methodology ideal for providing backup protection.Spectral analysis of equivalent power factor angle(EPFA)variation has been adopted for detecting the occurrence of fault that occurred anywhere in the grid.Classification of the type of fault occurred is achieved from the spectral coefficients with the aid of artificial intelligence.The proposed system can considerably assist system protection center(SPC)in fault localization and to restore the line at the earliest.Effectiveness of proposed system has been validated using case studies conducted on standard power system networks.展开更多
BACKGROUND It is important to diagnose depression in Parkinson’s disease(DPD)as soon as possible and identify the predictors of depression to improve quality of life in Parkinson’s disease(PD)patients.AIM To develop...BACKGROUND It is important to diagnose depression in Parkinson’s disease(DPD)as soon as possible and identify the predictors of depression to improve quality of life in Parkinson’s disease(PD)patients.AIM To develop a model for predicting DPD based on the support vector machine,while considering sociodemographic factors,health habits,Parkinson's symptoms,sleep behavior disorders,and neuropsychiatric indicators as predictors and provide baseline data for identifying DPD.METHODS This study analyzed 223 of 335 patients who were 60 years or older with PD.Depression was measured using the 30 items of the Geriatric Depression Scale,and the explanatory variables included PD-related motor signs,rapid eye movement sleep behavior disorders,and neuropsychological tests.The support vector machine was used to develop a DPD prediction model.RESULTS When the effects of PD motor symptoms were compared using“functional weight”,late motor complications(occurrence of levodopa-induced dyskinesia)were the most influential risk factors for Parkinson's symptoms.CONCLUSION It is necessary to develop customized screening tests that can detect DPD in the early stage and continuously monitor high-risk groups based on the factors related to DPD derived from this predictive model in order to maintain the emotional health of PD patients.展开更多
文摘Remote monitoring of transmission lines of a power system is significant for improved reliability and stability during fault conditions and protection system breakdowns.This paper proposes a smart backup monitoring system for detecting and classifying the type of transmission line fault occurred in a power grid.In contradiction to conventional methods,transmission line fault occurred at any locality within power grid can be identified and classified using measurements from phasor measurement unit(PMU)at one of the generator buses.This minimal requirement makes the proposed methodology ideal for providing backup protection.Spectral analysis of equivalent power factor angle(EPFA)variation has been adopted for detecting the occurrence of fault that occurred anywhere in the grid.Classification of the type of fault occurred is achieved from the spectral coefficients with the aid of artificial intelligence.The proposed system can considerably assist system protection center(SPC)in fault localization and to restore the line at the earliest.Effectiveness of proposed system has been validated using case studies conducted on standard power system networks.
基金the National Research Foundation of Korea,No.NRF-2019S1A5A8034211the National Research Foundation of Korea,No.NRF-2018R1D1A1B07041091.
文摘BACKGROUND It is important to diagnose depression in Parkinson’s disease(DPD)as soon as possible and identify the predictors of depression to improve quality of life in Parkinson’s disease(PD)patients.AIM To develop a model for predicting DPD based on the support vector machine,while considering sociodemographic factors,health habits,Parkinson's symptoms,sleep behavior disorders,and neuropsychiatric indicators as predictors and provide baseline data for identifying DPD.METHODS This study analyzed 223 of 335 patients who were 60 years or older with PD.Depression was measured using the 30 items of the Geriatric Depression Scale,and the explanatory variables included PD-related motor signs,rapid eye movement sleep behavior disorders,and neuropsychological tests.The support vector machine was used to develop a DPD prediction model.RESULTS When the effects of PD motor symptoms were compared using“functional weight”,late motor complications(occurrence of levodopa-induced dyskinesia)were the most influential risk factors for Parkinson's symptoms.CONCLUSION It is necessary to develop customized screening tests that can detect DPD in the early stage and continuously monitor high-risk groups based on the factors related to DPD derived from this predictive model in order to maintain the emotional health of PD patients.