A low-power 14-bit 150MS/s an- alog-to-digital converter (ADC) is present- ed for communication applications. Range scaling enables a maximal 2-Vp-p input with a single-stage opamp adopted. Opamp and capacitor shari...A low-power 14-bit 150MS/s an- alog-to-digital converter (ADC) is present- ed for communication applications. Range scaling enables a maximal 2-Vp-p input with a single-stage opamp adopted. Opamp and capacitor sharing between the first multi- plying digital-to-analog converter (MDAC) and the second one reduces the total opamp power further. The dedicated sample-and- hold amplifier (SHA) is removed to lower the power and the noise. The blind calibration of linearity errors is proposed to improve the per- formance. The prototype ADC is fabricated in a 130rim CMOS process with a 1.3-V supply voltage. The SNDR of the ADC is 71.3 dB with a 2.4 MHz input and remains 68.5 dB for a 120 MHz input. It consumes 85 roW, which includes 57 mW for the ADC core, 11 mW for the low jitter clock receiver and 17 mW for the high-speed reference buffer.展开更多
A new loading-balanced architecture for high speed and low power consumption pipeline analog-todigital converter(ADC) is presented in this paper. The proposed ADC uses SHA-less, op-amp and capacitor-sharing techniqu...A new loading-balanced architecture for high speed and low power consumption pipeline analog-todigital converter(ADC) is presented in this paper. The proposed ADC uses SHA-less, op-amp and capacitor-sharing technique, capacitor-scaling scheme to reduce the die area and power consumption. A new capacitor-sharing scheme was proposed to cancel the extra reset phase of the feedback capacitors. The non-standard inter-stage gain increases the feedback factor of the first stage and makes it equal to the second stage, by which, the load capacitor of op-amp shared by the first and second stages is balanced. As for the fourth stage, the capacitor and op-amp no longer scale down. From the system's point of view, all load capacitors of the shared OTAs are balanced by employing a loadingbalanced architecture. The die area and power consumption are optimized maximally. The ADC is implemented in a 0.18 μm 1P6M CMOS technology, and occupies a die area of 1.2×1.2 mm^2. The measurement results show a 55.58 dB signal-to-noise-and-distortion ratio(SNDR) and 62.97 dB spurious-free dynamic range(SFDR) with a 25 MHz input operating at a 200 MS/s sampling rate. The proposed ADC consumes 115 m W at 200 MS/s from a 1.8 V supply.展开更多
The volume and exposure time of nuclear radiation detectors are different in the Marine environment.This paper selects γ-rays emitted by ^(131)I,^(137)Cs and ^(208)Tl radionuclides,and uses NaI detectors of different...The volume and exposure time of nuclear radiation detectors are different in the Marine environment.This paper selects γ-rays emitted by ^(131)I,^(137)Cs and ^(208)Tl radionuclides,and uses NaI detectors of different volumes to simulate the minimum detectable activity concentration(MDAC)at different exposure time.And this paper studies the relationship between the increase multiple of crystal volume and the decrease multiple of MDAC.In this paper,based on MDAC,the existence of nuclides at different crystal volumes and different exposure times was qualitatively calculated and analyzed,which will be of guiding significance to the in situ γ spectrum measurement and long-term monitoring of seawater.展开更多
The increasing architecture complexity of data converters makes it necessary to use behavioral models to simulate their electrical performance and to determine their relevant data features. For this purpose, a specifi...The increasing architecture complexity of data converters makes it necessary to use behavioral models to simulate their electrical performance and to determine their relevant data features. For this purpose, a specific data converter simulation environment has been developed which allows designers to perform time-domain behavioral simulations of pipelined analog to digital converters (ADCs). All the necessary blocks of this specific simulation environment have been implemented using the popular Matlab simulink environment. The purpose of this paper is to present the behavioral models of these blocks taking into account most of the pipelined ADC non-idealities, such as sampling jitter, noise, and operational amplifier parameters (white noise, finite DC gain, finite bandwidth, slew rate, and saturation voltages). Simulations, using a 10-bit pipelined ADC as a design example, show that in addition to the limits analysis and the electrical features extraction, designers can determine the specifications of the basic blocks in order to meet the given data converter requirements.展开更多
A 10-bit 50 MS/s pipelined SAR ADC is presented which pipelines a 5-bit SAR-based MDAC with a 6-bit SAR ADC.The 1-bit redundancy relaxes the requirement for the sub-ADC decision in accuracy.The SAR-based and "half-g...A 10-bit 50 MS/s pipelined SAR ADC is presented which pipelines a 5-bit SAR-based MDAC with a 6-bit SAR ADC.The 1-bit redundancy relaxes the requirement for the sub-ADC decision in accuracy.The SAR-based and "half-gain" MDAC reduce the power consumption and core area.The dynamic comparator and SAR control logic are applied to reduce power consumption.Implemented in 180 nm CMOS,the fabricated ADC achieves 56.04 dB SNDR and 5mW power consumption from 1.8 V power supply at 50 MS/s.展开更多
A 10 bit 80 MSPS analog to digital converter optimized for WLAN analog front end is presented. In contrast to conventional 1.5 bit pipeline architecture, four optimized multiit multiply digital to analog converter sta...A 10 bit 80 MSPS analog to digital converter optimized for WLAN analog front end is presented. In contrast to conventional 1.5 bit pipeline architecture, four optimized multiit multiply digital to analog converter stages are implemented. An on-chip low-noise reference buffer is proposed for SoC integration purposes, and a wide-bandwidth wide swing sample and hold amplifier is also presented for achieving a good dynamic range. The converter was fabricated in 0.18 #m 1P6M CMOS technology, and the core area occupies approximately 0.85 mm2. Measured results show that with an 11 MHz input signal, it provides a 9.4 bit effective number of bits and a 72 dBc spurious frequency dynamic range when sampled at 80 MHz.展开更多
基金supported by the Major National Science & Technology Program of China under Grant No.2012ZX03004004-002National High Technology Research and Development Program of China under Grant No. 2013AA014302
文摘A low-power 14-bit 150MS/s an- alog-to-digital converter (ADC) is present- ed for communication applications. Range scaling enables a maximal 2-Vp-p input with a single-stage opamp adopted. Opamp and capacitor sharing between the first multi- plying digital-to-analog converter (MDAC) and the second one reduces the total opamp power further. The dedicated sample-and- hold amplifier (SHA) is removed to lower the power and the noise. The blind calibration of linearity errors is proposed to improve the per- formance. The prototype ADC is fabricated in a 130rim CMOS process with a 1.3-V supply voltage. The SNDR of the ADC is 71.3 dB with a 2.4 MHz input and remains 68.5 dB for a 120 MHz input. It consumes 85 roW, which includes 57 mW for the ADC core, 11 mW for the low jitter clock receiver and 17 mW for the high-speed reference buffer.
文摘A new loading-balanced architecture for high speed and low power consumption pipeline analog-todigital converter(ADC) is presented in this paper. The proposed ADC uses SHA-less, op-amp and capacitor-sharing technique, capacitor-scaling scheme to reduce the die area and power consumption. A new capacitor-sharing scheme was proposed to cancel the extra reset phase of the feedback capacitors. The non-standard inter-stage gain increases the feedback factor of the first stage and makes it equal to the second stage, by which, the load capacitor of op-amp shared by the first and second stages is balanced. As for the fourth stage, the capacitor and op-amp no longer scale down. From the system's point of view, all load capacitors of the shared OTAs are balanced by employing a loadingbalanced architecture. The die area and power consumption are optimized maximally. The ADC is implemented in a 0.18 μm 1P6M CMOS technology, and occupies a die area of 1.2×1.2 mm^2. The measurement results show a 55.58 dB signal-to-noise-and-distortion ratio(SNDR) and 62.97 dB spurious-free dynamic range(SFDR) with a 25 MHz input operating at a 200 MS/s sampling rate. The proposed ADC consumes 115 m W at 200 MS/s from a 1.8 V supply.
基金National Defense Fundamental Research Project,JCKY2020404C004,Jiangmei ZhangNatural Science Foundation of Sichuan Province,22NSFSC2458,Jiangmei Zhang。
文摘The volume and exposure time of nuclear radiation detectors are different in the Marine environment.This paper selects γ-rays emitted by ^(131)I,^(137)Cs and ^(208)Tl radionuclides,and uses NaI detectors of different volumes to simulate the minimum detectable activity concentration(MDAC)at different exposure time.And this paper studies the relationship between the increase multiple of crystal volume and the decrease multiple of MDAC.In this paper,based on MDAC,the existence of nuclides at different crystal volumes and different exposure times was qualitatively calculated and analyzed,which will be of guiding significance to the in situ γ spectrum measurement and long-term monitoring of seawater.
文摘The increasing architecture complexity of data converters makes it necessary to use behavioral models to simulate their electrical performance and to determine their relevant data features. For this purpose, a specific data converter simulation environment has been developed which allows designers to perform time-domain behavioral simulations of pipelined analog to digital converters (ADCs). All the necessary blocks of this specific simulation environment have been implemented using the popular Matlab simulink environment. The purpose of this paper is to present the behavioral models of these blocks taking into account most of the pipelined ADC non-idealities, such as sampling jitter, noise, and operational amplifier parameters (white noise, finite DC gain, finite bandwidth, slew rate, and saturation voltages). Simulations, using a 10-bit pipelined ADC as a design example, show that in addition to the limits analysis and the electrical features extraction, designers can determine the specifications of the basic blocks in order to meet the given data converter requirements.
基金supported by the National Natural Science Foundation of China(Nos.61234002,61322405,61306044,61376033)the Opening Project of Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory(No.ZHD201302)
文摘A 10-bit 50 MS/s pipelined SAR ADC is presented which pipelines a 5-bit SAR-based MDAC with a 6-bit SAR ADC.The 1-bit redundancy relaxes the requirement for the sub-ADC decision in accuracy.The SAR-based and "half-gain" MDAC reduce the power consumption and core area.The dynamic comparator and SAR control logic are applied to reduce power consumption.Implemented in 180 nm CMOS,the fabricated ADC achieves 56.04 dB SNDR and 5mW power consumption from 1.8 V power supply at 50 MS/s.
基金Project supported by the National Science & Technology Major Projects of China(No.2009ZX03007-002-03)
文摘A 10 bit 80 MSPS analog to digital converter optimized for WLAN analog front end is presented. In contrast to conventional 1.5 bit pipeline architecture, four optimized multiit multiply digital to analog converter stages are implemented. An on-chip low-noise reference buffer is proposed for SoC integration purposes, and a wide-bandwidth wide swing sample and hold amplifier is also presented for achieving a good dynamic range. The converter was fabricated in 0.18 #m 1P6M CMOS technology, and the core area occupies approximately 0.85 mm2. Measured results show that with an 11 MHz input signal, it provides a 9.4 bit effective number of bits and a 72 dBc spurious frequency dynamic range when sampled at 80 MHz.