Yangtze River Delta (YRD) area is one of the important economic zones in China. However, this area faces increasing environmental problems. In this study, we use ground-based multi-axis differential optical absorpti...Yangtze River Delta (YRD) area is one of the important economic zones in China. However, this area faces increasing environmental problems. In this study, we use ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) network in Eastern China to retrieve variations of NO2, SO2, and formaldehyde (HCHO) in the YRD area. Three cities of YRD (Hefei, Nanjing, and Shanghai) were selected for long-term observations. This paper presents technical performance and characteristics of instruments, their distribution in YRD, and results of vertical column densities (VCDs) and profiles of NO2, SO2, and HCHO. Average diurnal variations of tropospheric NO2 and SO2 in different seasons over the three stations yielded minimum values at noon or in the early afternoon, whereas tropospheric HCHO reached the maximum during midday hours. Slight reduction of the pollutants in weekends occurred in all the three sites. In general trace gas concentrations gradually reduced from Shanghai to Hefei. Tropospheric VCDs of NO2, SO2, and HCHO were compared with those from Ozone Monitoring Instrument (OMI) satellite observations, resulting in R2 of 0.606, 0.5432, and 0.5566, respectively. According to analysis of regional transports of pollutants, pollution process happened in YRO under the north wind with the pollution dissipating in the southeast wind. The feature is significant in exploring transport of tropospheric trace gas pollution in YRD, and provides basis for satellite and model validation.展开更多
In this study,a hybrid model,the convolutional neural network-support vector regression model,was adopted to achieve prediction of the NO_(2)profile in Nanjing from January 2019to March 2021.Given the sudden decline i...In this study,a hybrid model,the convolutional neural network-support vector regression model,was adopted to achieve prediction of the NO_(2)profile in Nanjing from January 2019to March 2021.Given the sudden decline in NO_(2)in February 2020,the contribution of the Coronavirus Disease-19(COVID-19)lockdown,Chinese New Year(CNY),and meteorologi cal conditions to the reduction of NO_(2)was evaluated.NO_(2)vertical column densities(VCDs) from January to March 2020 decreased by 59.05%and 32.81%,relative to the same period in 2019 and 2021,respectively.During the period of 2020 COVID-19,the average NO_(2)VCDs were 50.50%and 29.96%lower than those during the pre-lockdown and post-lockdown pe riods,respectively.The NO_(2)volume mixing ratios(VMRs)during the 2020 COVID-19 lock down significantly decreased below 400 m.The NO_(2)VMRs under the different wind fields were significantly lower during the lockdown period than during the pre-lockdown period This phenomenon could be attributed to the 2020 COVID-19 lockdown.The NO_(2)VMRs be fore and after the CNY were significantly lower in 2020 than in 2019 and 2021 in the same period,which further proves that the decrease in NO_(2)in February 2020 was attributed to the COVID-19 lockdown.Pollution source analysis of an NO_(2)pollution episode during the lockdown period showed that the polluted air mass in the Beijing-Tianjin-Hebei was trans ported southwards under the action of the north wind,and the subsequent unfavorable meteorological conditions(local wind speed of<2.0 m/sec)resulted in the accumulation o pollutants.展开更多
This study presents a comprehensive overview of the atmospheric pollutants including Sulfur dioxide(SO_(2)),Nitrogen dioxide(NO_(2)),Formaldehyde(HCHO),Particulate Matter PM;PM_(10):diameter≤10μm,and PM_(2.5):diame...This study presents a comprehensive overview of the atmospheric pollutants including Sulfur dioxide(SO_(2)),Nitrogen dioxide(NO_(2)),Formaldehyde(HCHO),Particulate Matter PM;PM_(10):diameter≤10μm,and PM_(2.5):diameter≤2.5μm,and Ozone(O_(3)),over Dongying(Shandong Province)from March-April 2018 and September-October 2019 by employing ground-based Multiple Axis Differential Optical Absorption Spectroscopy(MAX-DOAS)observations along with the in-situ measurements attained by the national air quality monitoring platform.The concentrations of SO_(2)and NO_(2)were under the acceptable level,while both PM_(2.5),and PM_(10)were higher than the safe levels as prescribed by national and international air quality standards.The results depict that 21%of the total observation days were found to be complex polluted days(PM_(2.5)>35μg/m^(3) and O_(3)>160μg/m^(3)).The secondary HCHO was used for accurate analysis of O_(3)sensitivity.A difference of 11.40%and 10%during March-April 2018 and September-October 2019 respectively in O_(3)sensitivity was found between HCHO_(total)/NO_(2)and HCHO_(sec)/NO_(2).The results indicate that primary HCHO have significant contribution in HCHO.O_(3)formation predominantly remained to be in VOC-limited and transitional regime during March-April 2018 and September-October 2019 in Dongying.These results imply that concurrent control of both NO_(x) and VOCs would benefit in ozone reductions.Additionally,the criteria pollutants(PM,SO_(2),and NO_(2))depicted strong correlations with each other except for O_(3)for which weak correlation coefficient was obtained with all the species.This study will prove to be baseline for designing of air pollution control strategies.展开更多
With the coming of the“14th Five-Year Plan,”the coordinated control of particulate matter with an aerodynamic diameter no greater than 2.5 lm(PM_(2.5))and O_(3) has become a major issue of air pollution prevention a...With the coming of the“14th Five-Year Plan,”the coordinated control of particulate matter with an aerodynamic diameter no greater than 2.5 lm(PM_(2.5))and O_(3) has become a major issue of air pollution prevention and control in China.The stereoscopic monitoring of regional PM_(2.5) and O_(3) and their precursors is crucial to achieve coordinated control.However,current monitoring networks are currently inadequate for monitoring the vertical profiles of both PM_(2.5) and O_(3) simultaneously and support air quality control.The University of Science and Technology of China(USTC)has established a nationwide ground-based hyperspectral stereoscopic remote sensing network based on multi-axis differential optical absorption spectroscopy(MAX-DOAS)since 2015.This monitoring network provides a significant opportunity for the regional coordinated control of PM_(2.5) and O_(3) in China.One-year vertical profiles of aerosol,NO_(2) and HCHO monitored from four MAX-DOAS stations installed in four megacities(Beijing,Shanghai,Shenzhen,and Chongqing)were used to characterize their vertical distribution differences in four key regions,Jing–Jin–Ji(JJJ),Yangtze River Delta(YRD),Pearl River Delta(PRD),and Sichuan Basin(SB),respectively.The normalized and yearly averaged aerosol vertical profiles below 400 m in JJJ and PRD exhibit a box shape and a Gaussian shape,respectively,and both show exponential shapes in YRD and SB.The NO_(2) vertical profiles in four regions all exhibit exponential shapes because of vehicle emissions.The shape of the HCHO vertical profile in JJJ and PRD was Gaussian,whereas an exponential shape was shown in YRD and SB.Moreover,a regional transport event occurred at an altitude of 600–1000 m was monitored in the southwest–northeast pathway of the North China Plain(NCP)by five MAX-DOAS stations(Shijiazhuang(SJZ),Wangdu(WD),Nancheng(NC),Chinese Academy of Meteorological Sciences(CAMS),and University of Chinese Academy of Sciences(UCAS))belonging to the above network.The aerosol optical depths(AOD)in t展开更多
基金supported by the National Natural Science Foundation of China (No: 41530644)the Monitoring and Assessment of Regional Air Quality in China using space Observations, Project Of Long-term sino-5 european co-Operation (MarcoPolo), FP7 (No: 606953)
文摘Yangtze River Delta (YRD) area is one of the important economic zones in China. However, this area faces increasing environmental problems. In this study, we use ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) network in Eastern China to retrieve variations of NO2, SO2, and formaldehyde (HCHO) in the YRD area. Three cities of YRD (Hefei, Nanjing, and Shanghai) were selected for long-term observations. This paper presents technical performance and characteristics of instruments, their distribution in YRD, and results of vertical column densities (VCDs) and profiles of NO2, SO2, and HCHO. Average diurnal variations of tropospheric NO2 and SO2 in different seasons over the three stations yielded minimum values at noon or in the early afternoon, whereas tropospheric HCHO reached the maximum during midday hours. Slight reduction of the pollutants in weekends occurred in all the three sites. In general trace gas concentrations gradually reduced from Shanghai to Hefei. Tropospheric VCDs of NO2, SO2, and HCHO were compared with those from Ozone Monitoring Instrument (OMI) satellite observations, resulting in R2 of 0.606, 0.5432, and 0.5566, respectively. According to analysis of regional transports of pollutants, pollution process happened in YRO under the north wind with the pollution dissipating in the southeast wind. The feature is significant in exploring transport of tropospheric trace gas pollution in YRD, and provides basis for satellite and model validation.
基金supported by the National Natural Science Foundation of China(Nos.U19A2044,42105132,42030609,41975037)the National Key Research and Development Program of China(No.2022YFC3700303)。
文摘In this study,a hybrid model,the convolutional neural network-support vector regression model,was adopted to achieve prediction of the NO_(2)profile in Nanjing from January 2019to March 2021.Given the sudden decline in NO_(2)in February 2020,the contribution of the Coronavirus Disease-19(COVID-19)lockdown,Chinese New Year(CNY),and meteorologi cal conditions to the reduction of NO_(2)was evaluated.NO_(2)vertical column densities(VCDs) from January to March 2020 decreased by 59.05%and 32.81%,relative to the same period in 2019 and 2021,respectively.During the period of 2020 COVID-19,the average NO_(2)VCDs were 50.50%and 29.96%lower than those during the pre-lockdown and post-lockdown pe riods,respectively.The NO_(2)volume mixing ratios(VMRs)during the 2020 COVID-19 lock down significantly decreased below 400 m.The NO_(2)VMRs under the different wind fields were significantly lower during the lockdown period than during the pre-lockdown period This phenomenon could be attributed to the 2020 COVID-19 lockdown.The NO_(2)VMRs be fore and after the CNY were significantly lower in 2020 than in 2019 and 2021 in the same period,which further proves that the decrease in NO_(2)in February 2020 was attributed to the COVID-19 lockdown.Pollution source analysis of an NO_(2)pollution episode during the lockdown period showed that the polluted air mass in the Beijing-Tianjin-Hebei was trans ported southwards under the action of the north wind,and the subsequent unfavorable meteorological conditions(local wind speed of<2.0 m/sec)resulted in the accumulation o pollutants.
基金supported by the Jiangsu Funding Program for Excellent Postdoctoral Talent (No.2022ZB651)the National Natural Science Foundation of China (No.32071521)+1 种基金the Scientific Research Foundation for Senior Talent of Jiangsu University,China (No.20JDG067)the Jiangsu Province“Double Innovation Ph D”Grant。
文摘This study presents a comprehensive overview of the atmospheric pollutants including Sulfur dioxide(SO_(2)),Nitrogen dioxide(NO_(2)),Formaldehyde(HCHO),Particulate Matter PM;PM_(10):diameter≤10μm,and PM_(2.5):diameter≤2.5μm,and Ozone(O_(3)),over Dongying(Shandong Province)from March-April 2018 and September-October 2019 by employing ground-based Multiple Axis Differential Optical Absorption Spectroscopy(MAX-DOAS)observations along with the in-situ measurements attained by the national air quality monitoring platform.The concentrations of SO_(2)and NO_(2)were under the acceptable level,while both PM_(2.5),and PM_(10)were higher than the safe levels as prescribed by national and international air quality standards.The results depict that 21%of the total observation days were found to be complex polluted days(PM_(2.5)>35μg/m^(3) and O_(3)>160μg/m^(3)).The secondary HCHO was used for accurate analysis of O_(3)sensitivity.A difference of 11.40%and 10%during March-April 2018 and September-October 2019 respectively in O_(3)sensitivity was found between HCHO_(total)/NO_(2)and HCHO_(sec)/NO_(2).The results indicate that primary HCHO have significant contribution in HCHO.O_(3)formation predominantly remained to be in VOC-limited and transitional regime during March-April 2018 and September-October 2019 in Dongying.These results imply that concurrent control of both NO_(x) and VOCs would benefit in ozone reductions.Additionally,the criteria pollutants(PM,SO_(2),and NO_(2))depicted strong correlations with each other except for O_(3)for which weak correlation coefficient was obtained with all the species.This study will prove to be baseline for designing of air pollution control strategies.
基金This research is supported by grants from the National Key Research and Development Program of China(2018YFC0213104)Project supported by the Presidential Foundation of the Hefei Institutes of Physical Science,Chinese Academy Sciences,China-“Spark”(YZJJ2021QN06)+6 种基金National Natural Science Foundation of China(41722501,91544212,51778596,41575021,41977184,and 41875043)National Key Research and Development Program of China(2017YFC0210002,2016YFC0203302,and 2017YFC0212800)Anhui Science and Technology Major Project(18030801111)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA23020301)the National Key Project for Causes and Control of Heavy Air Pollution(DQGG0102 and DQGG0205)the National High-Resolution Earth Observation Project of China(05-Y30B01-9001-19/20-3)Civil Aerospace Technology Advance Research Project(Y7K00100KJ).From 0-100 and 200-300 m layers,the production of O_(3) changed from predominantly VOCs-limited condition to mainly mixed VOCs-NOx-limited condition.
文摘With the coming of the“14th Five-Year Plan,”the coordinated control of particulate matter with an aerodynamic diameter no greater than 2.5 lm(PM_(2.5))and O_(3) has become a major issue of air pollution prevention and control in China.The stereoscopic monitoring of regional PM_(2.5) and O_(3) and their precursors is crucial to achieve coordinated control.However,current monitoring networks are currently inadequate for monitoring the vertical profiles of both PM_(2.5) and O_(3) simultaneously and support air quality control.The University of Science and Technology of China(USTC)has established a nationwide ground-based hyperspectral stereoscopic remote sensing network based on multi-axis differential optical absorption spectroscopy(MAX-DOAS)since 2015.This monitoring network provides a significant opportunity for the regional coordinated control of PM_(2.5) and O_(3) in China.One-year vertical profiles of aerosol,NO_(2) and HCHO monitored from four MAX-DOAS stations installed in four megacities(Beijing,Shanghai,Shenzhen,and Chongqing)were used to characterize their vertical distribution differences in four key regions,Jing–Jin–Ji(JJJ),Yangtze River Delta(YRD),Pearl River Delta(PRD),and Sichuan Basin(SB),respectively.The normalized and yearly averaged aerosol vertical profiles below 400 m in JJJ and PRD exhibit a box shape and a Gaussian shape,respectively,and both show exponential shapes in YRD and SB.The NO_(2) vertical profiles in four regions all exhibit exponential shapes because of vehicle emissions.The shape of the HCHO vertical profile in JJJ and PRD was Gaussian,whereas an exponential shape was shown in YRD and SB.Moreover,a regional transport event occurred at an altitude of 600–1000 m was monitored in the southwest–northeast pathway of the North China Plain(NCP)by five MAX-DOAS stations(Shijiazhuang(SJZ),Wangdu(WD),Nancheng(NC),Chinese Academy of Meteorological Sciences(CAMS),and University of Chinese Academy of Sciences(UCAS))belonging to the above network.The aerosol optical depths(AOD)in t