摘要
With the coming of the“14th Five-Year Plan,”the coordinated control of particulate matter with an aerodynamic diameter no greater than 2.5 lm(PM_(2.5))and O_(3) has become a major issue of air pollution prevention and control in China.The stereoscopic monitoring of regional PM_(2.5) and O_(3) and their precursors is crucial to achieve coordinated control.However,current monitoring networks are currently inadequate for monitoring the vertical profiles of both PM_(2.5) and O_(3) simultaneously and support air quality control.The University of Science and Technology of China(USTC)has established a nationwide ground-based hyperspectral stereoscopic remote sensing network based on multi-axis differential optical absorption spectroscopy(MAX-DOAS)since 2015.This monitoring network provides a significant opportunity for the regional coordinated control of PM_(2.5) and O_(3) in China.One-year vertical profiles of aerosol,NO_(2) and HCHO monitored from four MAX-DOAS stations installed in four megacities(Beijing,Shanghai,Shenzhen,and Chongqing)were used to characterize their vertical distribution differences in four key regions,Jing–Jin–Ji(JJJ),Yangtze River Delta(YRD),Pearl River Delta(PRD),and Sichuan Basin(SB),respectively.The normalized and yearly averaged aerosol vertical profiles below 400 m in JJJ and PRD exhibit a box shape and a Gaussian shape,respectively,and both show exponential shapes in YRD and SB.The NO_(2) vertical profiles in four regions all exhibit exponential shapes because of vehicle emissions.The shape of the HCHO vertical profile in JJJ and PRD was Gaussian,whereas an exponential shape was shown in YRD and SB.Moreover,a regional transport event occurred at an altitude of 600–1000 m was monitored in the southwest–northeast pathway of the North China Plain(NCP)by five MAX-DOAS stations(Shijiazhuang(SJZ),Wangdu(WD),Nancheng(NC),Chinese Academy of Meteorological Sciences(CAMS),and University of Chinese Academy of Sciences(UCAS))belonging to the above network.The aerosol optical depths(AOD)in t
基金
This research is supported by grants from the National Key Research and Development Program of China(2018YFC0213104)
Project supported by the Presidential Foundation of the Hefei Institutes of Physical Science,Chinese Academy Sciences,China-“Spark”(YZJJ2021QN06)
National Natural Science Foundation of China(41722501,91544212,51778596,41575021,41977184,and 41875043)
National Key Research and Development Program of China(2017YFC0210002,2016YFC0203302,and 2017YFC0212800)
Anhui Science and Technology Major Project(18030801111)
the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA23020301)
the National Key Project for Causes and Control of Heavy Air Pollution(DQGG0102 and DQGG0205)
the National High-Resolution Earth Observation Project of China(05-Y30B01-9001-19/20-3)
Civil Aerospace Technology Advance Research Project(Y7K00100KJ).From 0-100 and 200-300 m layers,the production of O_(3) changed from predominantly VOCs-limited condition to mainly mixed VOCs-NOx-limited condition.