Suppose that f(x)=(f<sub>1</sub>(x),....f<sub>r</sub>(x))<sup>T</sup>, x∈R<sup>d</sup> is a vector-valued function satisfying the refinement equation f(x)=∑&...Suppose that f(x)=(f<sub>1</sub>(x),....f<sub>r</sub>(x))<sup>T</sup>, x∈R<sup>d</sup> is a vector-valued function satisfying the refinement equation f(x)=∑<sub> </sub>c<sub>k</sub> f(2x-k) with finite set of Z<sup>d</sup> and some r×r matricex c<sub>k</sub>. The requirements for f to have accuracy p are given in terms of the symbol function m(ξ).展开更多
The concept of two-direction refinable functions and two-direction wavelets is introduced.We investigate the existence of distributional(or L2-stable) solutions of the two-direction refinement equation: φ(x)=∑p+kφ(...The concept of two-direction refinable functions and two-direction wavelets is introduced.We investigate the existence of distributional(or L2-stable) solutions of the two-direction refinement equation: φ(x)=∑p+kφ(mx-k)+∑p-kφ(k-mx) where m ≥ 2 is an integer. Based on the positive mask {pk+} and negative mask {p-k}, the conditions that guarantee the above equation has compactly distributional solutions or L2-stable solutions are established. Furthermore, the condition that the L2-stable solution of the above equation can generate a two-direction MRA is given. The support interval of φ(x) is discussed amply. The definition of orthogonal two-direction refinable function and orthogonal two-direction wavelets is presented, and the orthogonality criteria for two-direction refinable functions are established. An algorithm for constructing orthogonal two-direction refinable functions and their two-direction wavelets is presented. Another construction algorithm for two-direction L2-refinable functions, which have nonnegative symbol masks and possess high approximation order and regularity, is presented. Finally, two construction examples are given.展开更多
Biorthogonal multiple wavelets are generated from refinable function vectors by using the multiresolution analysis. In this paper we provide a general method for the construction of compactly supported biorthogonal mu...Biorthogonal multiple wavelets are generated from refinable function vectors by using the multiresolution analysis. In this paper we provide a general method for the construction of compactly supported biorthogonal multiple wavelets by refinable function vectors which are the solutions of vector refinement equations of the form $$\varphi (x) = \sum\limits_{\alpha \in \mathbb{Z}^s } {a(\alpha )\varphi (Mx - \alpha ), x \in \mathbb{R}^s } ,$$ where the vector of functions ? = (? 1, …, ? r)T is in $(L_2 (\mathbb{R}^s ))^r ,a = :(a(\alpha ))_{\alpha \in \mathbb{Z}^s } $ is a finitely supported sequence of r × r matrices called the refinement mask, and M is an s × s integer matrix such that lim n→∞ M ?n = 0. Our characterizations are in the general setting and the main results of this paper are the real extensions of some known results.展开更多
This article aims at studying two-direction refinable functions and two-direction wavelets in the setting R^s, s 〉 1. We give a sufficient condition for a two-direction refinable function belonging to L^2(R^s). The...This article aims at studying two-direction refinable functions and two-direction wavelets in the setting R^s, s 〉 1. We give a sufficient condition for a two-direction refinable function belonging to L^2(R^s). Then, two theorems are given for constructing biorthogonal (orthogonal) two-direction refinable functions in L^2(R^s) and their biorthogonal (orthogonal) two-direction wavelets, respectively. From the constructed biorthogonal (orthogonal) two-direction wavelets, symmetric biorthogonal (orthogonal) multiwaveles in L^2(R^s) can be obtained easily. Applying the projection method to biorthogonal (orthogonal) two-direction wavelets in L^2(R^s), we can get dual (tight) two-direction wavelet frames in L^2(R^m), where m ≤ s. From the projected dual (tight) two-direction wavelet frames in L^2(R^m), symmetric dual (tight) frames in L^2(R^m) can be obtained easily. In the end, an example is given to illustrate theoretical results.展开更多
In this paper, based on existing symmetric multiwavelets, we give an explicit algorithm for constructing multiwavelets with high approximation order and symmetry. Concretely, suppose Φ(x):= (φ1(x), ..., φr(x)) T is...In this paper, based on existing symmetric multiwavelets, we give an explicit algorithm for constructing multiwavelets with high approximation order and symmetry. Concretely, suppose Φ(x):= (φ1(x), ..., φr(x)) T is a symmetric refinable function vectors with approximation order m. For an arbitrary nonnegative integer n, a new symmetric refinable function vector Φnew(x):= (φ 1 new (x), ..., φ r new (x)) T with approximation order m + n can be constructed through the algorithm mentioned above. Additionally, we reveal the relation between Φ(x) and Φnew(x). To embody our results, we construct a symmetric refinable function vector with approximation order 6 from Hermite cubics which provides approximation order 4.展开更多
Let M be a d × d expansive matrix, and FL2(Ω) be a reducing subspace of L2(Rd). This paper characterizes bounded measurable sets in Rd which are the supports of Fourier transforms of M-refinable frame functi...Let M be a d × d expansive matrix, and FL2(Ω) be a reducing subspace of L2(Rd). This paper characterizes bounded measurable sets in Rd which are the supports of Fourier transforms of M-refinable frame functions. As applications, we derive the characterization of bounded measurable sets as the supports of Fourier transforms of FMRA (W-type FMRA) frame scaling functions and MRA (W-type MRA) scaling functions for FL2(Ω), respectively. Some examples are also provided.展开更多
In this paper, for a given d x d we investigate the compactly supported expansive matrix M with | det M| = 2, M-wavelets for L^2(R^d). Starting with N a pair of compactly supported refinable functions and satis...In this paper, for a given d x d we investigate the compactly supported expansive matrix M with | det M| = 2, M-wavelets for L^2(R^d). Starting with N a pair of compactly supported refinable functions and satisfying a mild condition, we obtain an explicit construction of a compactly supported wavelet p such that {2J/2b(Mj -k):j E Z, k c gg} forms a Riesz basis for L2(Ra). The (anti-)symmetry of such ~b is studied, and some examples are also provided.展开更多
In this paper, the author at first develops a method to study convergence of the cascadealgorithm in a Banach space without stable assumption on the initial (see Theorem 2.1), andthen applies the previous result on th...In this paper, the author at first develops a method to study convergence of the cascadealgorithm in a Banach space without stable assumption on the initial (see Theorem 2.1), andthen applies the previous result on the convergence to characterizing compactly supportedrefinable distributions in fractional Sobolev spaces and Holder continuous spaces (see Theorems3.1, 3.3, and 3.4). Finally the author applies the above characterization to choosing appropriateinitial to guarantee the convergence of the cascade algorithm (see Theorem 4.2).展开更多
In this paper, we investigate the support of a refinable vector satisfying an inhomoge- neous refinement equation. By using some methods introduced by So and Wang, an estimate is given for the support of each componen...In this paper, we investigate the support of a refinable vector satisfying an inhomoge- neous refinement equation. By using some methods introduced by So and Wang, an estimate is given for the support of each component function of a compactly supported refinable vector satisfying an inhomogeneous matrix refinement equation with finitely supported masks.展开更多
In this paper, we shall study the solutions of functional equations of the formΦ=∑α∈Zsa(α)Φ(M.-α)where is an r × 1 column vector of functions on the s-dimensional Euclidean space,a := (a(a))α∈Zs...In this paper, we shall study the solutions of functional equations of the formΦ=∑α∈Zsa(α)Φ(M.-α)where is an r × 1 column vector of functions on the s-dimensional Euclidean space,a := (a(a))α∈Zs is an exponentially decaying sequence of r × r complex matrices called refinement mask and M is an s × s integer matrix such that limn∞ M-n =0. We axe interested in the question, for a mask a with exponential decay, if there exists a solution ~ to the functional equation with each function φj, j = 1,... ,r, belonging to L2(Rs) and having exponential decay in some sense? Our approach will be to consider the convergence of vector cascade algorithms in weighted L2 spaces. The vector cascade operator Qa,M associated with mask a and matrix M is defined by展开更多
In this paper some properties of refinable functions and some relationships between the mask symbol and the refinable functions are studied. Especially, it is illustrated by examples that the linear spaces formed by t...In this paper some properties of refinable functions and some relationships between the mask symbol and the refinable functions are studied. Especially, it is illustrated by examples that the linear spaces formed by the translates over the lattice points of refinable functions may contain polynomial spaces of deg-ree higher than the smooth order of the corresponding refinable functions.展开更多
This paper is devoted to investigating the solutions of refinement equations of the form Ф(x)=∑α∈Z^s α(α)Ф(Mx-α),x∈R^s,where the vector of functions Ф = (Ф1,… ,Фr)^T is in (L1(R^s))^r, α =(...This paper is devoted to investigating the solutions of refinement equations of the form Ф(x)=∑α∈Z^s α(α)Ф(Mx-α),x∈R^s,where the vector of functions Ф = (Ф1,… ,Фr)^T is in (L1(R^s))^r, α =(α(α))α∈Z^s is an infinitely supported sequence of r × r matrices called the refinement mask, and M is an s × s integer matrix such that lim n→∞ M^-n =0, with m = detM. Some properties about the solutions of refinement equations axe obtained.展开更多
This paper proves the following results: Le t X= lim ←{X σ,π σ ρ,Λ},|Λ|=λ, and every p rojection π σ: X→X σ be an open and onto mapping. (A) If X is λ-paracompact and every X σ is normal and δθ-ref...This paper proves the following results: Le t X= lim ←{X σ,π σ ρ,Λ},|Λ|=λ, and every p rojection π σ: X→X σ be an open and onto mapping. (A) If X is λ-paracompact and every X σ is normal and δθ-refinable, then X is normal and δθ-refinable; (B) If X is hereditarily λ-pa racompact and every X σ is hereditarily normal and hereditarily δθ- refinable, then X is hereditarily normal and hereditarily δθ-refiable .展开更多
We investigate the construction of two-direction tight wavelet frames First, a sufficient condition for a two-direction refinable function generating two-direction tight wavelet frames is derived. Second, a simple con...We investigate the construction of two-direction tight wavelet frames First, a sufficient condition for a two-direction refinable function generating two-direction tight wavelet frames is derived. Second, a simple constructive method of two-direction tight wavelet frames is given. Third, based on the obtained two-direction tight wavelet frames, one can construct a symmetric multiwavelet frame easily. Finally, some examples are given to illustrate the results.展开更多
In this paper,some conditions which assure the compactly supported refinable distributions supported on a self-affine tile to be Lebesgue-Stieltjes measures or absolutely continuous measures with respect to Lebesgue-S...In this paper,some conditions which assure the compactly supported refinable distributions supported on a self-affine tile to be Lebesgue-Stieltjes measures or absolutely continuous measures with respect to Lebesgue-Stieltjes measures are given.展开更多
The focus of this paper is on the relationship between accuracy of multivariate refinable vector and vector cascade algorithm. We show that, if the vector cascade algorithm (1.5) with isotropic dilation converges to a...The focus of this paper is on the relationship between accuracy of multivariate refinable vector and vector cascade algorithm. We show that, if the vector cascade algorithm (1.5) with isotropic dilation converges to a vector-valued function with regularity, then the initial function must satisfy the Strang-Fix conditions.展开更多
We present a concrete method of constructing multiresolution analysis on interval. The method generalizes the corresponding results of Cohen, Daubechies and Vial [Appl. Comput. Harmonic Anal., 1(1993), 54-81]. By th...We present a concrete method of constructing multiresolution analysis on interval. The method generalizes the corresponding results of Cohen, Daubechies and Vial [Appl. Comput. Harmonic Anal., 1(1993), 54-81]. By the use of the subdivision operator, the expressions of the constructed functions are more compact. Furthermore, the method reveals more clearly some properties of multiresolution analysis with certain approximation order.展开更多
In this paper, some characterizations on the convergence rate of both the homogeneous and nonhomogeneous subdivision schemes in Sobolev space are studied and given.
文摘Suppose that f(x)=(f<sub>1</sub>(x),....f<sub>r</sub>(x))<sup>T</sup>, x∈R<sup>d</sup> is a vector-valued function satisfying the refinement equation f(x)=∑<sub> </sub>c<sub>k</sub> f(2x-k) with finite set of Z<sup>d</sup> and some r×r matricex c<sub>k</sub>. The requirements for f to have accuracy p are given in terms of the symbol function m(ξ).
基金This work was Supported by the Natural Science Foundation of Guangdong Province (Grant Nos.06105648,05008289,032038)the Doctoral Foundation of Guangdong Province (Grant No.04300917)
文摘The concept of two-direction refinable functions and two-direction wavelets is introduced.We investigate the existence of distributional(or L2-stable) solutions of the two-direction refinement equation: φ(x)=∑p+kφ(mx-k)+∑p-kφ(k-mx) where m ≥ 2 is an integer. Based on the positive mask {pk+} and negative mask {p-k}, the conditions that guarantee the above equation has compactly distributional solutions or L2-stable solutions are established. Furthermore, the condition that the L2-stable solution of the above equation can generate a two-direction MRA is given. The support interval of φ(x) is discussed amply. The definition of orthogonal two-direction refinable function and orthogonal two-direction wavelets is presented, and the orthogonality criteria for two-direction refinable functions are established. An algorithm for constructing orthogonal two-direction refinable functions and their two-direction wavelets is presented. Another construction algorithm for two-direction L2-refinable functions, which have nonnegative symbol masks and possess high approximation order and regularity, is presented. Finally, two construction examples are given.
基金This work was partially supported by the National Natural Science Foundation of China(Grant Nos.10071071 and 10471123)the Mathematical Tianyuan Foundation of the National Natural Science Foundation of China NSF(Grant No.10526036)China Postdoctoral Science Foundation(Grant No.20060391063)
文摘Biorthogonal multiple wavelets are generated from refinable function vectors by using the multiresolution analysis. In this paper we provide a general method for the construction of compactly supported biorthogonal multiple wavelets by refinable function vectors which are the solutions of vector refinement equations of the form $$\varphi (x) = \sum\limits_{\alpha \in \mathbb{Z}^s } {a(\alpha )\varphi (Mx - \alpha ), x \in \mathbb{R}^s } ,$$ where the vector of functions ? = (? 1, …, ? r)T is in $(L_2 (\mathbb{R}^s ))^r ,a = :(a(\alpha ))_{\alpha \in \mathbb{Z}^s } $ is a finitely supported sequence of r × r matrices called the refinement mask, and M is an s × s integer matrix such that lim n→∞ M ?n = 0. Our characterizations are in the general setting and the main results of this paper are the real extensions of some known results.
基金supported by the Natural Science Foundation China(11126343)Guangxi Natural Science Foundation(2013GXNSFBA019010)+1 种基金supported by Natural Science Foundation China(11071152)Natural Science Foundation of Guangdong Province(10151503101000025,S2011010004511)
文摘This article aims at studying two-direction refinable functions and two-direction wavelets in the setting R^s, s 〉 1. We give a sufficient condition for a two-direction refinable function belonging to L^2(R^s). Then, two theorems are given for constructing biorthogonal (orthogonal) two-direction refinable functions in L^2(R^s) and their biorthogonal (orthogonal) two-direction wavelets, respectively. From the constructed biorthogonal (orthogonal) two-direction wavelets, symmetric biorthogonal (orthogonal) multiwaveles in L^2(R^s) can be obtained easily. Applying the projection method to biorthogonal (orthogonal) two-direction wavelets in L^2(R^s), we can get dual (tight) two-direction wavelet frames in L^2(R^m), where m ≤ s. From the projected dual (tight) two-direction wavelet frames in L^2(R^m), symmetric dual (tight) frames in L^2(R^m) can be obtained easily. In the end, an example is given to illustrate theoretical results.
基金supported by the Natural Science Foundation of Guangdong Province (Grant Nos. 05008289,032038)the Doctoral Foundation of Guangdong Province (Grant No. 04300917)
文摘In this paper, based on existing symmetric multiwavelets, we give an explicit algorithm for constructing multiwavelets with high approximation order and symmetry. Concretely, suppose Φ(x):= (φ1(x), ..., φr(x)) T is a symmetric refinable function vectors with approximation order m. For an arbitrary nonnegative integer n, a new symmetric refinable function vector Φnew(x):= (φ 1 new (x), ..., φ r new (x)) T with approximation order m + n can be constructed through the algorithm mentioned above. Additionally, we reveal the relation between Φ(x) and Φnew(x). To embody our results, we construct a symmetric refinable function vector with approximation order 6 from Hermite cubics which provides approximation order 4.
基金Supported by Beijing Natural Science Foundation (No.1122008)the Scientific Research Common Programof Beijing Municipal Commission of Education (No.KM201110005030)
文摘Let M be a d × d expansive matrix, and FL2(Ω) be a reducing subspace of L2(Rd). This paper characterizes bounded measurable sets in Rd which are the supports of Fourier transforms of M-refinable frame functions. As applications, we derive the characterization of bounded measurable sets as the supports of Fourier transforms of FMRA (W-type FMRA) frame scaling functions and MRA (W-type MRA) scaling functions for FL2(Ω), respectively. Some examples are also provided.
文摘In this paper, for a given d x d we investigate the compactly supported expansive matrix M with | det M| = 2, M-wavelets for L^2(R^d). Starting with N a pair of compactly supported refinable functions and satisfying a mild condition, we obtain an explicit construction of a compactly supported wavelet p such that {2J/2b(Mj -k):j E Z, k c gg} forms a Riesz basis for L2(Ra). The (anti-)symmetry of such ~b is studied, and some examples are also provided.
文摘In this paper, the author at first develops a method to study convergence of the cascadealgorithm in a Banach space without stable assumption on the initial (see Theorem 2.1), andthen applies the previous result on the convergence to characterizing compactly supportedrefinable distributions in fractional Sobolev spaces and Holder continuous spaces (see Theorems3.1, 3.3, and 3.4). Finally the author applies the above characterization to choosing appropriateinitial to guarantee the convergence of the cascade algorithm (see Theorem 4.2).
基金Supported by National Natural Science Foundation of China (Grant Nos. 10771190, 10471123)
文摘In this paper, we investigate the support of a refinable vector satisfying an inhomoge- neous refinement equation. By using some methods introduced by So and Wang, an estimate is given for the support of each component function of a compactly supported refinable vector satisfying an inhomogeneous matrix refinement equation with finitely supported masks.
基金Supported by National Natural Science Foundation of China(Grant Nos.11101120, 11171299 and 11001247)Fundamental Research Funds for the Central Universities
文摘In this paper, we shall study the solutions of functional equations of the formΦ=∑α∈Zsa(α)Φ(M.-α)where is an r × 1 column vector of functions on the s-dimensional Euclidean space,a := (a(a))α∈Zs is an exponentially decaying sequence of r × r complex matrices called refinement mask and M is an s × s integer matrix such that limn∞ M-n =0. We axe interested in the question, for a mask a with exponential decay, if there exists a solution ~ to the functional equation with each function φj, j = 1,... ,r, belonging to L2(Rs) and having exponential decay in some sense? Our approach will be to consider the convergence of vector cascade algorithms in weighted L2 spaces. The vector cascade operator Qa,M associated with mask a and matrix M is defined by
文摘In this paper some properties of refinable functions and some relationships between the mask symbol and the refinable functions are studied. Especially, it is illustrated by examples that the linear spaces formed by the translates over the lattice points of refinable functions may contain polynomial spaces of deg-ree higher than the smooth order of the corresponding refinable functions.
基金Supported by the National Natural Science Foundation of China (10071071)
文摘This paper is devoted to investigating the solutions of refinement equations of the form Ф(x)=∑α∈Z^s α(α)Ф(Mx-α),x∈R^s,where the vector of functions Ф = (Ф1,… ,Фr)^T is in (L1(R^s))^r, α =(α(α))α∈Z^s is an infinitely supported sequence of r × r matrices called the refinement mask, and M is an s × s integer matrix such that lim n→∞ M^-n =0, with m = detM. Some properties about the solutions of refinement equations axe obtained.
文摘This paper proves the following results: Le t X= lim ←{X σ,π σ ρ,Λ},|Λ|=λ, and every p rojection π σ: X→X σ be an open and onto mapping. (A) If X is λ-paracompact and every X σ is normal and δθ-refinable, then X is normal and δθ-refinable; (B) If X is hereditarily λ-pa racompact and every X σ is hereditarily normal and hereditarily δθ- refinable, then X is hereditarily normal and hereditarily δθ-refiable .
基金Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant No. 11071152), the Natural Science Foundation of Guangdong Province (Grant No. $2011010004511) Education Department of Henan Province and the Science and Technology Research of (Grant No. 14B520045).
文摘We investigate the construction of two-direction tight wavelet frames First, a sufficient condition for a two-direction refinable function generating two-direction tight wavelet frames is derived. Second, a simple constructive method of two-direction tight wavelet frames is given. Third, based on the obtained two-direction tight wavelet frames, one can construct a symmetric multiwavelet frame easily. Finally, some examples are given to illustrate the results.
文摘In this paper,some conditions which assure the compactly supported refinable distributions supported on a self-affine tile to be Lebesgue-Stieltjes measures or absolutely continuous measures with respect to Lebesgue-Stieltjes measures are given.
基金The paper is supported financially by State Nature Foundation (No.40004003) Major State Basic Research Program of People's Republic of China (G1999032803).
文摘The focus of this paper is on the relationship between accuracy of multivariate refinable vector and vector cascade algorithm. We show that, if the vector cascade algorithm (1.5) with isotropic dilation converges to a vector-valued function with regularity, then the initial function must satisfy the Strang-Fix conditions.
基金Research supported in part by NSF of China under Grant 10571010 and 10171007
文摘We present a concrete method of constructing multiresolution analysis on interval. The method generalizes the corresponding results of Cohen, Daubechies and Vial [Appl. Comput. Harmonic Anal., 1(1993), 54-81]. By the use of the subdivision operator, the expressions of the constructed functions are more compact. Furthermore, the method reveals more clearly some properties of multiresolution analysis with certain approximation order.
文摘In this paper, some characterizations on the convergence rate of both the homogeneous and nonhomogeneous subdivision schemes in Sobolev space are studied and given.