It remains unclear whether biochar applications to calcareous soils can improve soil fertility and crop yield. A long-term field experiment was established in 2009 so as to determine the effect of biochar on crop yiel...It remains unclear whether biochar applications to calcareous soils can improve soil fertility and crop yield. A long-term field experiment was established in 2009 so as to determine the effect of biochar on crop yield and soil properties in a calcareous soil. Five treatments were: 1) straw incorporation; 2) straw incorporation with inorganic fertilizer; 3), 4) and 5) straw incorporation with inorganic fertilizer, and biochar at 30, 60, and 90 t ha-l, respectively. The annual yield of either winter wheat or summer maize was not increased significantly following biochar application, whereas the cumulative yield over the first 4 growing seasons was significantly increased. Soil pH, measured in situ, was increased by a maximum of 0.35 units after 2 yr following biochar application. After 3 yr, soil bulk density significantly decreased while soil water holding capacity increased with adding biochar of 90 t ha^-1. Alkaline hydrolysable N decreased but exchangeable K increased due to biochar addition. Olsen-P did not change compared to the treatment without biochar. The results suggested that biochar could be used in calcareous soils without yield loss or significant impacts on nutrient availability.展开更多
基金financially supported by the National Natural Science Foundation of China (41171211)
文摘It remains unclear whether biochar applications to calcareous soils can improve soil fertility and crop yield. A long-term field experiment was established in 2009 so as to determine the effect of biochar on crop yield and soil properties in a calcareous soil. Five treatments were: 1) straw incorporation; 2) straw incorporation with inorganic fertilizer; 3), 4) and 5) straw incorporation with inorganic fertilizer, and biochar at 30, 60, and 90 t ha-l, respectively. The annual yield of either winter wheat or summer maize was not increased significantly following biochar application, whereas the cumulative yield over the first 4 growing seasons was significantly increased. Soil pH, measured in situ, was increased by a maximum of 0.35 units after 2 yr following biochar application. After 3 yr, soil bulk density significantly decreased while soil water holding capacity increased with adding biochar of 90 t ha^-1. Alkaline hydrolysable N decreased but exchangeable K increased due to biochar addition. Olsen-P did not change compared to the treatment without biochar. The results suggested that biochar could be used in calcareous soils without yield loss or significant impacts on nutrient availability.