灰狼优化算法(Grey Wolf Optimization,GWO)是新型启元优化算法,相比于其他群体智能优化算法,该算法同样存在收敛速度较慢、不稳定、易陷入局部最优等问题。针对上述问题,根据GWO算法的结构特点,提出了一种自适应调整策略的混沌灰狼优...灰狼优化算法(Grey Wolf Optimization,GWO)是新型启元优化算法,相比于其他群体智能优化算法,该算法同样存在收敛速度较慢、不稳定、易陷入局部最优等问题。针对上述问题,根据GWO算法的结构特点,提出了一种自适应调整策略的混沌灰狼优化算法(Chaotic Local Search GWO),利用自适应调整策略来提高GWO算法的收敛速度,通过混沌局部搜索策略增加种群的多样性,使搜索过程避免陷入局部最优。最后利用6个测试函数对算法进行仿真验证,并结合其他4种算法进行了横向比较。实验结果证明,所提出的改进算法在收敛速度、精度以及稳定性方面具有明显的优势。展开更多
灰狼优化算法(grey wolf optimization,GWO)存在收敛的不合理性等缺陷,目前对GWO算法的收敛性改进方式较少,除此之外,当GWO迭代至后期,所有灰狼个体都逼近α狼、β狼、δ狼,导致算法陷入局部最优。针对以上问题,提出了一种增强型的灰狼...灰狼优化算法(grey wolf optimization,GWO)存在收敛的不合理性等缺陷,目前对GWO算法的收敛性改进方式较少,除此之外,当GWO迭代至后期,所有灰狼个体都逼近α狼、β狼、δ狼,导致算法陷入局部最优。针对以上问题,提出了一种增强型的灰狼优化算法(disturbance and somersault foraging-grey wolf optimization,DSF-GWO)。首先引入一种扰动因子,平衡了算法的开采和勘探能力;其次引入翻筋斗觅食策略,在后期使其不陷入局部最优的同时也使得前期的群体多样性略有提升。对DSF-GWO算法的寻优性能进行验证,选取14个单/多峰目标函数进行实验,在相同的参数设置下,结果表明DSF-GWO算法在寻优性能上较GWO算法有明显优势。展开更多
文摘灰狼优化算法(Grey Wolf Optimization,GWO)是新型启元优化算法,相比于其他群体智能优化算法,该算法同样存在收敛速度较慢、不稳定、易陷入局部最优等问题。针对上述问题,根据GWO算法的结构特点,提出了一种自适应调整策略的混沌灰狼优化算法(Chaotic Local Search GWO),利用自适应调整策略来提高GWO算法的收敛速度,通过混沌局部搜索策略增加种群的多样性,使搜索过程避免陷入局部最优。最后利用6个测试函数对算法进行仿真验证,并结合其他4种算法进行了横向比较。实验结果证明,所提出的改进算法在收敛速度、精度以及稳定性方面具有明显的优势。
文摘灰狼优化算法(grey wolf optimization,GWO)存在收敛的不合理性等缺陷,目前对GWO算法的收敛性改进方式较少,除此之外,当GWO迭代至后期,所有灰狼个体都逼近α狼、β狼、δ狼,导致算法陷入局部最优。针对以上问题,提出了一种增强型的灰狼优化算法(disturbance and somersault foraging-grey wolf optimization,DSF-GWO)。首先引入一种扰动因子,平衡了算法的开采和勘探能力;其次引入翻筋斗觅食策略,在后期使其不陷入局部最优的同时也使得前期的群体多样性略有提升。对DSF-GWO算法的寻优性能进行验证,选取14个单/多峰目标函数进行实验,在相同的参数设置下,结果表明DSF-GWO算法在寻优性能上较GWO算法有明显优势。