Beam splitting is one of the main approaches to achieving x-ray ghost imaging, and the intensity correlation between diffraction beam and transmission beam will directly affect the imaging quality. In this paper, we i...Beam splitting is one of the main approaches to achieving x-ray ghost imaging, and the intensity correlation between diffraction beam and transmission beam will directly affect the imaging quality. In this paper, we investigate the intensity correlation between the split x-ray beams by Laue diffraction of stress-free crystal. The analysis based on the dynamical theory of x-ray diffraction indicates that the spatial resolution of diffraction image and transmission image are reduced due to the position shift of the exit beam. In the experimental setup, a stress-free crystal with a thickness of hundredmicrometers-level is used for beam splitting. The crystal is in a non-dispersive configuration equipped with a double-crystal monochromator to ensure that the dimension of the diffraction beam and transmission beam are consistent. A correlation coefficient of 0.92 is achieved experimentally and the high signal-to-noise ratio of the x-ray ghost imaging is anticipated.Results of this paper demonstrate that the developed beam splitter of Laue crystal has the potential in the efficient data acquisition of x-ray ghost imaging.展开更多
A Laue microdiffraction beamline(BL03HB) was constructed at the Shanghai Synchrotron Radiation Facility(SSRF).This beamline features two consecutive focusing points in two different sectors within its end station, the...A Laue microdiffraction beamline(BL03HB) was constructed at the Shanghai Synchrotron Radiation Facility(SSRF).This beamline features two consecutive focusing points in two different sectors within its end station, the first dedicated to protein crystallography and the other tailored to materials science applications. Based on a superbend dipole magnet with a magnetic field of 2.29 T, a two-stage focusing design was implemented with two sets of Kirkpatrick-Baez mirrors to achieve a micro white beam as small as 4.2 μ m ×4.3 μ m at the first sector and 0.9 μ m ×1.3 μ m at the second sector in the standard beamline operation mode at SSRF. The X-ray microbeam in the two sectors can be easily switched between monochromatic and white beams by moving a four-bounce monochromator in or out of the light path, respectively. In the protein crystallography sector, white-beam Laue microdiffraction was demonstrated to successfully determine the structure of protein crystals from only a few images of diffraction data collected by a Pilatus 2 M area detector. In the materials science sector,the white-beam Laue diffraction was collected in a reflection geometry using another Pilatus 2 M area detector, which could map the microstructural distribution on the sample surface by scanning the samples. In general, the BL03HB beamline promotes the application of Laue microdiffraction in both protein crystallography and materials science. This paper presents a comprehensive overview of the BL03HB beamline, end station, and the first commission results.展开更多
We designed and fabricated a multilayer Laue lens (MLL) as a hard X-ray focusing device. WSi2/Si multilayers were chosen owing to their excellent optical properties and relatively sharp interface. The multilayer sam...We designed and fabricated a multilayer Laue lens (MLL) as a hard X-ray focusing device. WSi2/Si multilayers were chosen owing to their excellent optical properties and relatively sharp interface. The multilayer sample was fabricated by using direct current (DC) magnetron sputtering technology and then was sliced and thinned to form an MLL. The thickness of each layer was determined by scanning electron microscopy (SEM) image analysis with marking layers. The focusing property of the MLL was measured at Beamline 15U, Shanghai Synchrotron Facility (SSRF). One-dimensional (1D) focusing resolutions of 92 nm are obtained at photon energy of 14 keV.展开更多
The multilayer Laue lens (MLL) is a novel diffraction optics which can realize nanometer focusing of hard X-rays with high efficiency. In this paper, a 7.9 μm-thick MLL with the outmost layer thickness of 15 nm is ...The multilayer Laue lens (MLL) is a novel diffraction optics which can realize nanometer focusing of hard X-rays with high efficiency. In this paper, a 7.9 μm-thick MLL with the outmost layer thickness of 15 nm is designed based on dynamical diffraction theory. The MLL is fabricated by first depositing the depth-graded multilayer using direct current (DC) magnetron sputtering technology. Then, the multilayer sample is sliced, and both cross-sections are thinned and polished to a depth of 35–41 μm. The focusing property of the MLL is measured at the Shanghai Synchrotron Facility (SSRF). One-dimensional (1D) focusing resolutions of 205 nm and 221 nm are obtained at E=14 keV and 18 keV, respectively. It demonstrates that the fabricated MLL can focus hard X-rays into nanometer scale.展开更多
Laue method is classical in X-ray analysis of crystals. Its diffraction spots are produced by the continuous spectrum of incident X-rays, in which the changeable wavelength can fit in with the different hkl diffractio...Laue method is classical in X-ray analysis of crystals. Its diffraction spots are produced by the continuous spectrum of incident X-rays, in which the changeable wavelength can fit in with the different hkl diffraction conditions.展开更多
The exit wave function including zero and high order Laue zones has been simulated by both multi-slice method and electron dynamic diffraction analytical expression. Coincidence of the simulations by these two methods...The exit wave function including zero and high order Laue zones has been simulated by both multi-slice method and electron dynamic diffraction analytical expression. Coincidence of the simulations by these two methods was achieved. The calculated results showed that the exit wave function highly dominated by zero order Laue zone, while high order ones modify the exit wave function to some extent depending on the situation. High order Laue zone effects become important for the following cases: sample consists of light elements, the thickness is very thin, lattice planar spacing perpendicular to the direction of the incident beam is large, and the electron beam has long wavelength. In these cases the exit wave function should be corrected by adding high order Laue zone effects. The analytical expression is effective and convenient for dealing with high order Laue zone effects.展开更多
Ⅰ. INTRODUCTION It has been proved that YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7-x</sub> superconducting thin films can be epitaxially grown on SrTiO<sub>3</sub> by dc magn...Ⅰ. INTRODUCTION It has been proved that YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7-x</sub> superconducting thin films can be epitaxially grown on SrTiO<sub>3</sub> by dc magnetron sputtering method with good lattice match along the axes However, for the epitaxial growth of YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7-x</sub> superconducting thin film on Zr(Y)O<sub>2</sub>, its[100] direction is parallel to the[110] direction of Zr(Y)O<sub>2</sub> in stead of the lattice matching along the axes, which is due to the big mismatch between YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7-x</sub>展开更多
The multilayer Laue lens(MLL) is a diffractive focusing optical element which can focus hard X-rays down to the nanometer scale. In this study, a WSi_(2)/Si multilayer structure consisting of 1736 layers, with a 7.2-n...The multilayer Laue lens(MLL) is a diffractive focusing optical element which can focus hard X-rays down to the nanometer scale. In this study, a WSi_(2)/Si multilayer structure consisting of 1736 layers, with a 7.2-nm-thick outermost layer and a total thickness of 17 μm, is prepared by DC magnetron sputtering. Regarding the thin film growth rate calibration, we correct the long-term growth rate drift from 2 to 0.6%, as measured by the grazing incidence X-ray reflectivity(GIXRR). A one-dimensional line focusing resolution of 64 nm was achieved,while the diffraction efficiency was 38% of the-1 order of the MLL Shanghai Synchrotron Radiation Facility(SSRF) with the BL15U beamline.展开更多
Multilayer Laue lenses are volume diffraction elements for the efficient focusing of X-rays.With a new manufacturing technique that we introduced,it is possible to fabricate lenses of sufficiently high numerical apert...Multilayer Laue lenses are volume diffraction elements for the efficient focusing of X-rays.With a new manufacturing technique that we introduced,it is possible to fabricate lenses of sufficiently high numerical aperture(NA)to achieve focal spot sizes below 10 nm.The alternating layers of the materials that form the lens must span a broad range of thicknesses on the nanometer scale to achieve the necessary range of X-ray deflection angles required to achieve a high NA.This poses a challenge to both the accuracy of the deposition process and the control of the materials properties,which often vary with layer thickness.We introduced a new pair of materials—tungsten carbide and silicon carbide—to prepare layered structures with smooth and sharp interfaces and with no material phase transitions that hampered the manufacture of previous lenses.Using a pair of multilayer Laue lenses(MLLs)fabricated from this system,we achieved a two-dimensional focus of 8.4×6.8 nm2 at a photon energy of 16.3 keV with high diffraction efficiency and demonstrated scanning-based imaging of samples with a resolution well below 10 nm.The high NA also allowed projection holographic imaging with strong phase contrast over a large range of magnifications.An error analysis indicates the possibility of achieving 1 nm focusing.展开更多
基金Project supported by the National Key Research and Development Program of China (Grant Nos.2022YFF0709103,2022YFA1603601,2021YFF0601203,and 2021YFA1600703)the National Natural Science Foundation of China (Grant No.81430087)the Shanghai Pilot Program for Basic Research-Chinese Academy of Sciences,Shanghai Branch (Grant No.JCYJ-SHFY-2021-010)。
文摘Beam splitting is one of the main approaches to achieving x-ray ghost imaging, and the intensity correlation between diffraction beam and transmission beam will directly affect the imaging quality. In this paper, we investigate the intensity correlation between the split x-ray beams by Laue diffraction of stress-free crystal. The analysis based on the dynamical theory of x-ray diffraction indicates that the spatial resolution of diffraction image and transmission image are reduced due to the position shift of the exit beam. In the experimental setup, a stress-free crystal with a thickness of hundredmicrometers-level is used for beam splitting. The crystal is in a non-dispersive configuration equipped with a double-crystal monochromator to ensure that the dimension of the diffraction beam and transmission beam are consistent. A correlation coefficient of 0.92 is achieved experimentally and the high signal-to-noise ratio of the x-ray ghost imaging is anticipated.Results of this paper demonstrate that the developed beam splitter of Laue crystal has the potential in the efficient data acquisition of x-ray ghost imaging.
文摘A Laue microdiffraction beamline(BL03HB) was constructed at the Shanghai Synchrotron Radiation Facility(SSRF).This beamline features two consecutive focusing points in two different sectors within its end station, the first dedicated to protein crystallography and the other tailored to materials science applications. Based on a superbend dipole magnet with a magnetic field of 2.29 T, a two-stage focusing design was implemented with two sets of Kirkpatrick-Baez mirrors to achieve a micro white beam as small as 4.2 μ m ×4.3 μ m at the first sector and 0.9 μ m ×1.3 μ m at the second sector in the standard beamline operation mode at SSRF. The X-ray microbeam in the two sectors can be easily switched between monochromatic and white beams by moving a four-bounce monochromator in or out of the light path, respectively. In the protein crystallography sector, white-beam Laue microdiffraction was demonstrated to successfully determine the structure of protein crystals from only a few images of diffraction data collected by a Pilatus 2 M area detector. In the materials science sector,the white-beam Laue diffraction was collected in a reflection geometry using another Pilatus 2 M area detector, which could map the microstructural distribution on the sample surface by scanning the samples. In general, the BL03HB beamline promotes the application of Laue microdiffraction in both protein crystallography and materials science. This paper presents a comprehensive overview of the BL03HB beamline, end station, and the first commission results.
基金Supported by National Natural Science Foundation of China(U1432244,11375131)Major State Basic Research Development Program(2011CB922203)
文摘We designed and fabricated a multilayer Laue lens (MLL) as a hard X-ray focusing device. WSi2/Si multilayers were chosen owing to their excellent optical properties and relatively sharp interface. The multilayer sample was fabricated by using direct current (DC) magnetron sputtering technology and then was sliced and thinned to form an MLL. The thickness of each layer was determined by scanning electron microscopy (SEM) image analysis with marking layers. The focusing property of the MLL was measured at Beamline 15U, Shanghai Synchrotron Facility (SSRF). One-dimensional (1D) focusing resolutions of 92 nm are obtained at photon energy of 14 keV.
基金Supported by National Natural Science Foundation of China (10825521)973 Project (2011CB922203)Natural Science Foundation of Shanghai (09ZR1434300)
文摘The multilayer Laue lens (MLL) is a novel diffraction optics which can realize nanometer focusing of hard X-rays with high efficiency. In this paper, a 7.9 μm-thick MLL with the outmost layer thickness of 15 nm is designed based on dynamical diffraction theory. The MLL is fabricated by first depositing the depth-graded multilayer using direct current (DC) magnetron sputtering technology. Then, the multilayer sample is sliced, and both cross-sections are thinned and polished to a depth of 35–41 μm. The focusing property of the MLL is measured at the Shanghai Synchrotron Facility (SSRF). One-dimensional (1D) focusing resolutions of 205 nm and 221 nm are obtained at E=14 keV and 18 keV, respectively. It demonstrates that the fabricated MLL can focus hard X-rays into nanometer scale.
文摘Laue method is classical in X-ray analysis of crystals. Its diffraction spots are produced by the continuous spectrum of incident X-rays, in which the changeable wavelength can fit in with the different hkl diffraction conditions.
基金National Natural Science Foundation of China(No.10374077)the Key Foundation of Education Department of Hunan Province 01A003the Scientific Fund of Education Department of Hunan Province 03C187
文摘The exit wave function including zero and high order Laue zones has been simulated by both multi-slice method and electron dynamic diffraction analytical expression. Coincidence of the simulations by these two methods was achieved. The calculated results showed that the exit wave function highly dominated by zero order Laue zone, while high order ones modify the exit wave function to some extent depending on the situation. High order Laue zone effects become important for the following cases: sample consists of light elements, the thickness is very thin, lattice planar spacing perpendicular to the direction of the incident beam is large, and the electron beam has long wavelength. In these cases the exit wave function should be corrected by adding high order Laue zone effects. The analytical expression is effective and convenient for dealing with high order Laue zone effects.
文摘Ⅰ. INTRODUCTION It has been proved that YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7-x</sub> superconducting thin films can be epitaxially grown on SrTiO<sub>3</sub> by dc magnetron sputtering method with good lattice match along the axes However, for the epitaxial growth of YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7-x</sub> superconducting thin film on Zr(Y)O<sub>2</sub>, its[100] direction is parallel to the[110] direction of Zr(Y)O<sub>2</sub> in stead of the lattice matching along the axes, which is due to the big mismatch between YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7-x</sub>
基金the National Natural Science Foundation of China(Nos.12005250,U1932167,and U1432244).
文摘The multilayer Laue lens(MLL) is a diffractive focusing optical element which can focus hard X-rays down to the nanometer scale. In this study, a WSi_(2)/Si multilayer structure consisting of 1736 layers, with a 7.2-nm-thick outermost layer and a total thickness of 17 μm, is prepared by DC magnetron sputtering. Regarding the thin film growth rate calibration, we correct the long-term growth rate drift from 2 to 0.6%, as measured by the grazing incidence X-ray reflectivity(GIXRR). A one-dimensional line focusing resolution of 64 nm was achieved,while the diffraction efficiency was 38% of the-1 order of the MLL Shanghai Synchrotron Radiation Facility(SSRF) with the BL15U beamline.
基金supported by Joachim Herz Stiftungthe Helmholtz Association through program-oriented funds.
文摘Multilayer Laue lenses are volume diffraction elements for the efficient focusing of X-rays.With a new manufacturing technique that we introduced,it is possible to fabricate lenses of sufficiently high numerical aperture(NA)to achieve focal spot sizes below 10 nm.The alternating layers of the materials that form the lens must span a broad range of thicknesses on the nanometer scale to achieve the necessary range of X-ray deflection angles required to achieve a high NA.This poses a challenge to both the accuracy of the deposition process and the control of the materials properties,which often vary with layer thickness.We introduced a new pair of materials—tungsten carbide and silicon carbide—to prepare layered structures with smooth and sharp interfaces and with no material phase transitions that hampered the manufacture of previous lenses.Using a pair of multilayer Laue lenses(MLLs)fabricated from this system,we achieved a two-dimensional focus of 8.4×6.8 nm2 at a photon energy of 16.3 keV with high diffraction efficiency and demonstrated scanning-based imaging of samples with a resolution well below 10 nm.The high NA also allowed projection holographic imaging with strong phase contrast over a large range of magnifications.An error analysis indicates the possibility of achieving 1 nm focusing.