The net surface snow accumulation on the Antarctic ice sheet is determined by a combination of precipitation, sublimation and wind redistribution. We present a one-year record of hourly snow-height measurements at LGB...The net surface snow accumulation on the Antarctic ice sheet is determined by a combination of precipitation, sublimation and wind redistribution. We present a one-year record of hourly snow-height measurements at LGB69 (70°50'S, 77°04'E, 1850 m a.s.l.). east side of Lambert Glacier basin (LGB), and 4 year record at G3 (70°53'S, 69°52'E, 84 m a.s.l.), Amery Ice Shelf (AIS). The measurements were made with ultrasonic sensors mounted on automatic weather stations installed at two sites. The snow accumulation at LGB69 is approximately 70 cm. Throughout the winter, between April and September, there was little change in surface snow height (SSH) at the two sites. The negative SSH change is due to densification at LGB69, and is due to both ablation and densification at G3. The strongest accumulation at two sites occurred during the period between October and March (accounting for 101.6% at LGB69), with four episodic increasing events occurring during 2002 for LGB69, and eight events during 1999-2002 for G3 (2 to 3 events per year). At LGB69, these episodic events coincided with obvious humidity 'pulses' and decreases of incoming solar radiation as recorded by the AWS. Observations of the total cloud amount at Davis station, 160 km NNE of LGB69, showed good correlation with major accumulation events recorded at LGB69. There was an obvious anti-correlation between the lowest cloud height at Davis and the daily accumulation rate at LGB69. Although there was no correlation over the total year between wind speed and accumulation at LGB69, large individual accumulation events are associated with episodes of strong wind (>7 m/s), we estimate drift snow may contribute to total SSH up to 35%. Strong accumulation events at LGB69 are associated with major storms in the region and inland transport of moist air masses from the coast.展开更多
Photovoltaic solar energy can be obtained by using several types of technologies, including silicon solar cells. The characterization of its solar cells makes it possible to know them better. This article presents, on...Photovoltaic solar energy can be obtained by using several types of technologies, including silicon solar cells. The characterization of its solar cells makes it possible to know them better. This article presents, on the one hand, the work that has been carried out on these cells. On the other hand, a theoretical study of the cell under illumination using Lambert’s W function. On the basis of the electrical parameters provided by the manufacturer, the parameters such as the series and shunt resistances and the electrical quantities such as the photocurrent and the photovoltage, are determined and studied according to the ideality factor of the diode. From the results obtained the shunt resistance increases when the ideality factor increases, the series resistance decreases very weakly.展开更多
Optimal,many-revolution spacecraft trajectories are challenging to solve.A connection is made for a class of models between optimal direct and indirect solutions.For transfers that minimize thrust-acceleration-squared...Optimal,many-revolution spacecraft trajectories are challenging to solve.A connection is made for a class of models between optimal direct and indirect solutions.For transfers that minimize thrust-acceleration-squared,primer vector theory maps direct,many-impulsive-maneuver trajectories to the indirect,continuous-thrust-acceleration equivalent.The mapping algorithm is independent of how the direct solution is obtained and requires only a solver for a boundary value problem and its partial derivatives.A Lambert solver is used for the two-body problem in this work.The mapping is simple because the impulsive maneuvers and co-states share the same linear space around an optimal trajectory.For numerical results,the direct coast-impulse solutions are demonstrated to converge to the indirect continuous solutions as the number of impulses and segments increases.The two-body design space is explored with a set of three many-revolution,many-segment examples changing semimajor axis,eccentricity,and inclination.The first two examples involve a small change to either semimajor axis or eccentricity,and the third example is a transfer to geosynchronous orbit.Using a single processor,the optimization runtime is seconds to minutes for revolution counts of 10 to 100,and on the order of one hour for examples with up to 500 revolutions.Any of these thrust-acceleration-squared solutions are good candidates to start a homotopy to a higher-fidelity minimization problem with practical constraints.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant No.40305007)Ministry of Science and Te chnology of China(2001CB711003)the Chinese Academy of Sciences(Grant No.KZCX2-303).
文摘The net surface snow accumulation on the Antarctic ice sheet is determined by a combination of precipitation, sublimation and wind redistribution. We present a one-year record of hourly snow-height measurements at LGB69 (70°50'S, 77°04'E, 1850 m a.s.l.). east side of Lambert Glacier basin (LGB), and 4 year record at G3 (70°53'S, 69°52'E, 84 m a.s.l.), Amery Ice Shelf (AIS). The measurements were made with ultrasonic sensors mounted on automatic weather stations installed at two sites. The snow accumulation at LGB69 is approximately 70 cm. Throughout the winter, between April and September, there was little change in surface snow height (SSH) at the two sites. The negative SSH change is due to densification at LGB69, and is due to both ablation and densification at G3. The strongest accumulation at two sites occurred during the period between October and March (accounting for 101.6% at LGB69), with four episodic increasing events occurring during 2002 for LGB69, and eight events during 1999-2002 for G3 (2 to 3 events per year). At LGB69, these episodic events coincided with obvious humidity 'pulses' and decreases of incoming solar radiation as recorded by the AWS. Observations of the total cloud amount at Davis station, 160 km NNE of LGB69, showed good correlation with major accumulation events recorded at LGB69. There was an obvious anti-correlation between the lowest cloud height at Davis and the daily accumulation rate at LGB69. Although there was no correlation over the total year between wind speed and accumulation at LGB69, large individual accumulation events are associated with episodes of strong wind (>7 m/s), we estimate drift snow may contribute to total SSH up to 35%. Strong accumulation events at LGB69 are associated with major storms in the region and inland transport of moist air masses from the coast.
文摘Photovoltaic solar energy can be obtained by using several types of technologies, including silicon solar cells. The characterization of its solar cells makes it possible to know them better. This article presents, on the one hand, the work that has been carried out on these cells. On the other hand, a theoretical study of the cell under illumination using Lambert’s W function. On the basis of the electrical parameters provided by the manufacturer, the parameters such as the series and shunt resistances and the electrical quantities such as the photocurrent and the photovoltage, are determined and studied according to the ideality factor of the diode. From the results obtained the shunt resistance increases when the ideality factor increases, the series resistance decreases very weakly.
文摘Optimal,many-revolution spacecraft trajectories are challenging to solve.A connection is made for a class of models between optimal direct and indirect solutions.For transfers that minimize thrust-acceleration-squared,primer vector theory maps direct,many-impulsive-maneuver trajectories to the indirect,continuous-thrust-acceleration equivalent.The mapping algorithm is independent of how the direct solution is obtained and requires only a solver for a boundary value problem and its partial derivatives.A Lambert solver is used for the two-body problem in this work.The mapping is simple because the impulsive maneuvers and co-states share the same linear space around an optimal trajectory.For numerical results,the direct coast-impulse solutions are demonstrated to converge to the indirect continuous solutions as the number of impulses and segments increases.The two-body design space is explored with a set of three many-revolution,many-segment examples changing semimajor axis,eccentricity,and inclination.The first two examples involve a small change to either semimajor axis or eccentricity,and the third example is a transfer to geosynchronous orbit.Using a single processor,the optimization runtime is seconds to minutes for revolution counts of 10 to 100,and on the order of one hour for examples with up to 500 revolutions.Any of these thrust-acceleration-squared solutions are good candidates to start a homotopy to a higher-fidelity minimization problem with practical constraints.