期刊文献+

基于改进蚁狮优化算法的太阳电池模型参数辨识 被引量:6

PARAMETER IDENTIFICATION OF SOLAR CELL MODEL BASED ON IMPROVED ANT LION ALGORITHM
下载PDF
导出
摘要 提出一种改进蚁狮优化算法,引入混沌序列进行初始值的分配,增强种群的均匀性和遍历性;在个体更新部分引入粒子群算法的思想,分别以当前的最优个体与全局最优个体为目标进行计算,同时提高算法的局部和全局搜索能力;参考当前最优个体位移进行动态空间收缩,可有效减小个体的搜索范围,缩短寻优时间。与粒子群算法、蝙蝠和原蚁狮算法进行仿真对比并应用到太阳电池模型参数辨识中,验证其有效性。 An improved ant lion algorithm was proposed,which allocates the initial positions of individuals by chaotic sequence,enhancing the population uniformity and ergodicity.The idea of particle swarm algorithm is introduced in the position updating of individuals,and the position of individuals is calculated based on the current best individuals and the overall best individual to enhance the capability of local and overall searching.The dynamic convergence by referring to the current optimal individual displacement is used to decrease the search range and shorten the time of optimization efficiently.The improved ant lion algorithm is compared with particle swarm algorithm,bat algorithm and ant lion algorithm in the identification of parameters of the solar cell model to verify validity.
作者 吴忠强 于丹琦 康晓华 Wu Zhongqiang;Yu Danqi;Kang Xiaohua(Key Lab of Industrial Computer Control Engineering of Hebei Province,Yanshan University,Qinhuangdao 066004,China)
出处 《太阳能学报》 EI CAS CSCD 北大核心 2019年第12期3435-3443,共9页 Acta Energiae Solaris Sinica
基金 河北省自然科学基金(F2016203006)
关键词 优化 参数辨识 太阳电池阵列 Lambert W函数 optimization parameter identification solar cell array Lambert W function
  • 相关文献

参考文献6

二级参考文献33

  • 1韩江洪,李正荣,魏振春.一种自适应粒子群优化算法及其仿真研究[J].系统仿真学报,2006,18(10):2969-2971. 被引量:122
  • 2赵争鸣,陈剑,孙晓瑛.太阳能光伏发电最大功率点跟踪技术[M].北京:电子工业出版社,2012. 被引量:57
  • 3A1Rashidi M R, AlHajri M F, E1-Naggar K M, et al. A new estimation approach for determining the I-V characteristics of solar cells [J]. Solar Energy, 2011, 85(7) : 1543-1550. 被引量:1
  • 4Walker G. Evaluating MPPT converter topologies using amatlab PV model [J]. Journal of Electrical and Electronics Engineering, 2001, 21 ( 1 ) : 49--55. 被引量:1
  • 5Carrero C, Rodnguez J, Ramrez D, et al. Simple estimation of PV modules loss resistances for low error modeling[J]. Renewable Energy, 2010, 35(5): 1103- 1108. 被引量:1
  • 6Gradella Villalva Marcelo, Gazoli Jonas Rafael, Filho Ernesto Ruppert. Comprehensive approach to modeling and simulation of photovohaic arrays [J]. IEEE Transactions on Power Electronics, 2009, 24 (5) : 1198-1205. 被引量:1
  • 7Chegaar M, Azzouzi G, Mialhe P. Simple parameter extraction method for illuminated solar cells [Jl. Solid- State Electronics, 2006, 50(7) : 1234-1237. 被引量:1
  • 8Saloux Etienne, Teyssedou Alberto, Sorin Mikhal. Explicit model of photovohaic panels to determine voltages and currents at the maximum power point [J]. Solar Energy, 2011, 85(5) : 713-722. 被引量:1
  • 9Chen Yifeng, Wang Xuemeng, Li Da, et al. Parameters extraction from commercial solar cells I-V characteristics and shunt analysis [J]. Applied Energy, 2011, 88(6) : 2239-2244. 被引量:1
  • 10Ishaque Kashif, Salam Zainal. An improved modeling method to determine the model parameters of photovohaic (PV) modules using differential evolution (DE) [J]. Solar Energy, 2011, 85(9) : 2349-2359. 被引量:1

共引文献125

同被引文献53

引证文献6

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部