Since the implementation of the Action Plan for Air Pollution Prevention and Control , all regions of China have steadily promoted the prevention and control of air pollution and achieved results continuously. However...Since the implementation of the Action Plan for Air Pollution Prevention and Control , all regions of China have steadily promoted the prevention and control of air pollution and achieved results continuously. However, the atmospheric environment in key areas such as Beijing-Tianjin-Hebei region, the Yangtze River Delta region, and Fenwei Plain is still severe, and especially during the heating period heavy pollution occurs frequently, which has become the focus and difficulty of improving the quality of the atmospheric environment and is also the weakest link of China s air pollution control at present. How to alleviate air pollution, how to win the battle of pollution prevention and control, how to hold the fruits of the blue sky defense war, energy consumption is key.展开更多
Full-period signal acquisition of vibration signal plays a vital role in the health monitoring and fault diagnosis of modern industrial equipment group. The traditional full-period signal acquisition methods usually n...Full-period signal acquisition of vibration signal plays a vital role in the health monitoring and fault diagnosis of modern industrial equipment group. The traditional full-period signal acquisition methods usually need not only a reference signal generated from special key phase device but also a reserved position, which is only suitable for a small number of particular equipment. A novel full-period signal acquisition method without key phase is proposed to construct the time-frequency method with strong energy concentration called the synchrosqueezing generalized S-Transform(SGST), combining together the Teager energy operator(TEO) and self-adaptive correlation analysis(SACA) based on the vibration signals of both gear and cylinder head. Actual vibration signals of diesel engine are employed to verify the feasibility and effectiveness of the proposed method by comparing with traditional method with special key phase device. By comparisons, the results show that full-period signal acquisition method without key phase has approximate accuracy for diesel engine under different working conditions.展开更多
基金Supported by Special Project for Research on Prevention and Control of Air Pollution from Fire Coal in 2018 of Ministry of Ecology and Environment of the People’s Republic of China(2018A030)National Natural Science Foundation of China(41771498)
文摘Since the implementation of the Action Plan for Air Pollution Prevention and Control , all regions of China have steadily promoted the prevention and control of air pollution and achieved results continuously. However, the atmospheric environment in key areas such as Beijing-Tianjin-Hebei region, the Yangtze River Delta region, and Fenwei Plain is still severe, and especially during the heating period heavy pollution occurs frequently, which has become the focus and difficulty of improving the quality of the atmospheric environment and is also the weakest link of China s air pollution control at present. How to alleviate air pollution, how to win the battle of pollution prevention and control, how to hold the fruits of the blue sky defense war, energy consumption is key.
基金Supported by the National Key Research and Development Plan of China(No.2016YFF0203305)the Fundamental Research Funds for the Central Universities of China(No.JD1912)Double First-Rate Construction Special Funds(No.ZD1601).
文摘Full-period signal acquisition of vibration signal plays a vital role in the health monitoring and fault diagnosis of modern industrial equipment group. The traditional full-period signal acquisition methods usually need not only a reference signal generated from special key phase device but also a reserved position, which is only suitable for a small number of particular equipment. A novel full-period signal acquisition method without key phase is proposed to construct the time-frequency method with strong energy concentration called the synchrosqueezing generalized S-Transform(SGST), combining together the Teager energy operator(TEO) and self-adaptive correlation analysis(SACA) based on the vibration signals of both gear and cylinder head. Actual vibration signals of diesel engine are employed to verify the feasibility and effectiveness of the proposed method by comparing with traditional method with special key phase device. By comparisons, the results show that full-period signal acquisition method without key phase has approximate accuracy for diesel engine under different working conditions.