期刊文献+
共找到39篇文章
< 1 2 >
每页显示 20 50 100
基于LDA主题模型的短文本分类方法 被引量:76
1
作者 张志飞 苗夺谦 高灿 《计算机应用》 CSCD 北大核心 2013年第6期1587-1590,共4页
针对短文本的特征稀疏性和上下文依赖性两个问题,提出一种基于隐含狄列克雷分配模型的短文本分类方法。利用模型生成的主题,一方面区分相同词的上下文,降低权重;另一方面关联不同词以减少稀疏性,增加权重。采用K近邻方法对自动抓取的网... 针对短文本的特征稀疏性和上下文依赖性两个问题,提出一种基于隐含狄列克雷分配模型的短文本分类方法。利用模型生成的主题,一方面区分相同词的上下文,降低权重;另一方面关联不同词以减少稀疏性,增加权重。采用K近邻方法对自动抓取的网易页面标题数据进行分类,实验表明新方法在分类性能上比传统的向量空间模型和基于主题的相似性度量分别高5%和2.5%左右。 展开更多
关键词 短文本 分类 k近邻 相似度 隐含狄列克雷分配
下载PDF
一种基于k最近邻的快速文本分类方法 被引量:14
2
作者 张庆国 张宏伟 张君玉 《中国科学院研究生院学报》 CAS CSCD 2005年第5期554-559,共6页
k最近邻方法是一种简单而有效的文本分类方法,但是传统的k最近邻分类方法在训练集数据量很大情况下,全局的最优搜索几乎是不可能的.因此,加速k个最近邻的搜索是k最近邻方法实用的关键.提出了一种基于k最近邻的快速文本分类方法,它能够... k最近邻方法是一种简单而有效的文本分类方法,但是传统的k最近邻分类方法在训练集数据量很大情况下,全局的最优搜索几乎是不可能的.因此,加速k个最近邻的搜索是k最近邻方法实用的关键.提出了一种基于k最近邻的快速文本分类方法,它能够保证在海量数据集中进行快速有效的分类.实验结果表明,这一方法较传统方法性能有显著提升. 展开更多
关键词 文本分类 k最近邻 多维索引 相似检索
下载PDF
一种基于混合策略的失衡数据集分类方法 被引量:16
3
作者 李鹏 王晓龙 +1 位作者 刘远超 王宝勋 《电子学报》 EI CAS CSCD 北大核心 2007年第11期2161-2165,共5页
提出了一种有效应用于失衡数据集的分类方法,其核心思想是从样本预处理和分类器改进两方面入手,为失衡数据集的分类问题提供全面的解决方案.首先创造性地采用动态自组织映射聚类的方法对失衡数据集进行重采样,这种采样方法,有效地解决... 提出了一种有效应用于失衡数据集的分类方法,其核心思想是从样本预处理和分类器改进两方面入手,为失衡数据集的分类问题提供全面的解决方案.首先创造性地采用动态自组织映射聚类的方法对失衡数据集进行重采样,这种采样方法,有效地解决了传统重采样的方法随机性强,人为主观干扰以及信息损失等弊端.随后借助K-近邻规则的思想,对新采集的样本进行剪枝,有效地解决了实际存在的数据混叠现象.算法对SVM的核函数进行等角变换,由此对类边界进行了校准,以适应样本类别失衡的情况.通过对三种算法的对比实验证明了算法在失衡数据集分类上的有效性.本文的算法已经在答案抽取技术中得到了成功应用,并在TREC2006国际QA评测中得到了客观充分的验证. 展开更多
关键词 失衡数据集 分类 支持向量机 动态自组织映射 k-近邻
下载PDF
基于二阶段相似度学习的协同过滤推荐算法 被引量:8
4
作者 沈键 杨煜普 《计算机应用研究》 CSCD 北大核心 2013年第3期715-719,共5页
针对传统的基于最近邻协同过滤推荐算法中计算相似度存在的缺陷,提出了一种基于二阶段相似度学习的协同过滤推荐算法,该算法旨在通过较少的迭代计算改善推荐算法性能。它以既约梯度法迭代寻优为主、最近邻算法为辅,通过邻居的海选和精选... 针对传统的基于最近邻协同过滤推荐算法中计算相似度存在的缺陷,提出了一种基于二阶段相似度学习的协同过滤推荐算法,该算法旨在通过较少的迭代计算改善推荐算法性能。它以既约梯度法迭代寻优为主、最近邻算法为辅,通过邻居的海选和精选,最终提高了相似度的计算精度,改善了误差性能。实验表明,在一定条件下该算法不仅在误差性能上优于传统的推荐算法,而且其算法收敛速度快,可实现相似度参数动态调整和分布式计算。 展开更多
关键词 二阶段 相似度学习 协同过滤 既约梯度法 k-最近邻算法
下载PDF
基于k-NN非参数模型的高山松生物量遥感估测研究 被引量:7
5
作者 谢福明 舒清态 +5 位作者 字李 吴荣 吴秋菊 汪红 刘延 吉一涛 《江西农业大学学报》 CAS CSCD 北大核心 2018年第4期743-750,共8页
以香格里拉高山松为研究对象,Landsat8/OLI为信息源,在前期进行香格里拉市高山松遥感特征光谱提取的基础上,结合地面50个实测样地数据,建立了研究区高山松地上生物量k-最近邻法(k-NN)遥感估测模型。结果表明,采用欧式距离度量特征变量... 以香格里拉高山松为研究对象,Landsat8/OLI为信息源,在前期进行香格里拉市高山松遥感特征光谱提取的基础上,结合地面50个实测样地数据,建立了研究区高山松地上生物量k-最近邻法(k-NN)遥感估测模型。结果表明,采用欧式距离度量特征变量间的相似度,距离分解因子t、最近邻数k值分别取2和4的模型参数结构下拟合精度达到最佳,决定系数(R^2)为0.71,均方根误差(RMSE)为18.21 t/hm^2;基于像元尺度的优化模型估测得到香格里拉市的生物量约为0.22亿t,研究结果可为低纬度高海拔地区的森林生物量遥感估测提供案例。 展开更多
关键词 森林地上生物量 遥感估算 LANDSAT 8 OLI k-最近邻法(k-nn)
下载PDF
支持均匀缩放的不等长时间子序列查询方法
6
作者 熊浩然 何震瀛 《计算机工程》 CSCD 北大核心 2024年第1期60-67,共8页
作为时序数据分析中的基础技术之一,时间序列的子序列查询旨在寻找与目标序列相似的子序列。现有的子序列查询方法大多仅支持查询与目标序列长度相同的子序列,因而均匀缩放技术常被用于解决子序列查询中的不等长问题。但现有支持均匀缩... 作为时序数据分析中的基础技术之一,时间序列的子序列查询旨在寻找与目标序列相似的子序列。现有的子序列查询方法大多仅支持查询与目标序列长度相同的子序列,因而均匀缩放技术常被用于解决子序列查询中的不等长问题。但现有支持均匀缩放的子序列查询技术大多未考虑子序列的Z-标准化,且对查询效率仍有改善的空间。针对该问题,提出一种基于索引技术且支持均匀缩放的子序列查询方法。结合现有索引方法 ULISSE提供的树状数据结构,设计可保证非漏报的下界距离,为索引结构的剪枝提供理论保证,并利用索引中存储的元数据,提出精确K-近邻查询算法。所提方法适用于非归一化和归一化两种场景。实验结果表明,较UCR-US和ULISSE基线方法,该基于索引的不等长子序列查询方法在CAP、GAP两个真实数据集以及随机游走人工合成数据集上均实现了查询效率的显著提升,针对在非归一化和归一化两种场景下的不等长子序列查询,该方法的平均效率提升分别为2.33和2.51倍。 展开更多
关键词 时间序列 子序列查询 均匀缩放 索引 下界距离 k-近邻
下载PDF
基于k-NN和SCATS交通数据的路段行程时间估计方法 被引量:5
7
作者 姜桂艳 李琦 董硕 《西南交通大学学报》 EI CSCD 北大核心 2013年第2期343-349,共7页
为了改善利用SCATS交通数据估计路段行程时间的效果,通过分析SCATS实际交通数据获取时间间隔不一致的特征,构建了SCATS交通数据虚拟时间序列,将利用因子分析法提取的累计贡献率在85%以上的主因子作为交通模式特征向量的构成要素,用欧氏... 为了改善利用SCATS交通数据估计路段行程时间的效果,通过分析SCATS实际交通数据获取时间间隔不一致的特征,构建了SCATS交通数据虚拟时间序列,将利用因子分析法提取的累计贡献率在85%以上的主因子作为交通模式特征向量的构成要素,用欧氏距离作为当前交通模式特征向量和历史交通模式特征向量相似性的测度指标,以路段行程时间估计误差最小为目标选取当前交通模式的近邻数,对交通模式之间距离的倒数进行归一化处理,确定了相似交通模式的行程时间权重,设计了基于SCATS交通数据的路段行程时间估计方法.实例结果表明:与多元线性回归方法相比,本文方法估计的路段行程时间平均绝对误差、平均绝对百分比误差和均方根误差分别平均减少了9.68 s、8.07%和4.5 s. 展开更多
关键词 悉尼自适应交通控制系统 路段行程时间估计 k近邻算法 因子分析
下载PDF
不平衡时间序列集成分类算法 被引量:2
8
作者 曹阳 闫秋艳 吴鑫 《计算机应用》 CSCD 北大核心 2021年第3期651-656,共6页
针对现有集成分类方法对不平衡时间序列数据学习能力欠佳的问题,采用优化组件算法性能和集成策略的思路,以异构集成方法即基于变换的集合的层次投票集合(HIVE-COTE)为基础,提出一种不平衡时间序列集成分类算法IMHIVE-COTE。该算法主要... 针对现有集成分类方法对不平衡时间序列数据学习能力欠佳的问题,采用优化组件算法性能和集成策略的思路,以异构集成方法即基于变换的集合的层次投票集合(HIVE-COTE)为基础,提出一种不平衡时间序列集成分类算法IMHIVE-COTE。该算法主要包含两个改进内容:首先,增加了一个新的不平衡分类组件SBST-HESCA,引入Boosting结合重采样的思路,并通过交叉验证预测结果来更新样本权重,从而使数据集的重采样过程更有利于提升少数类样本的分类质量;其次,结合SBST-HESCA组件对HIVE-COTE计算框架进行改进,通过优化组件算法的权重使不平衡时间序列分类算法对分类结果拥有更高的投票比重,从而再次提升集成算法整体的分类质量。实验部分对IMHIVE-COTE的性能进行了验证和分析:和对比方法相比,IMHIVE-COTE有最高的整体分类评价,并且在三个不平衡分类指标值上分别得到了最优、最优、第三优的整体分类评价,可以证明IMHIVE-COTE解决不平衡时间序列分类问题的能力明显较高。 展开更多
关键词 不平衡时间序列 集成分类算法 提升方法 k最近邻 基于变换的集合的层次投票集合
下载PDF
基于K-IDPC算法的Wi-Fi室内定位方法 被引量:2
9
作者 何洋 吴飞 +2 位作者 贺成成 朱海 毛万葵 《传感器与微系统》 CSCD 2019年第11期46-49,53,共5页
针对目前室内定位依靠Wi-Fi电磁指纹库方法实现室内人员定位进行判别存在误差大以及时效性低的问题,本文提出一种融合K近邻(K-NN)的改进密度峰值聚类(K-IDPC)算法。引入关联系数和K-NN思想,解决了普通密度峰值聚类(DPC)算法对定位数据... 针对目前室内定位依靠Wi-Fi电磁指纹库方法实现室内人员定位进行判别存在误差大以及时效性低的问题,本文提出一种融合K近邻(K-NN)的改进密度峰值聚类(K-IDPC)算法。引入关联系数和K-NN思想,解决了普通密度峰值聚类(DPC)算法对定位数据密度不均衡,聚类中心区分度不高的问题,进而提高了对定位环境的鲁棒性。并结合数据切分算法,对离线电磁数据进行切割,使得大数据集分为若干小数据集,降低了计算复杂度。实验结果表明:提出的室内定位方法,同传统的K均值(K-means)、具有噪声应用的基于密度空间聚类(DBSCAN)、DPC聚类算法相比,能够有效地提高室内定位的效果。 展开更多
关键词 Wi-Fi定位 密度峰值聚类 关联系数 k近邻 数据切割
下载PDF
Discriminant Analysis for Human Arm Motion Prediction and Classifying
10
作者 Mohammed Z. Al-Faiz Sarmad H. Ahmed 《Intelligent Control and Automation》 2013年第1期26-31,共6页
The EMG signal which is generated by the muscles activity diffuses to the skin surface of human body. This paper presents a pattern recognition system based on Linear Discriminant Analysis (LDA) algorithm for the clas... The EMG signal which is generated by the muscles activity diffuses to the skin surface of human body. This paper presents a pattern recognition system based on Linear Discriminant Analysis (LDA) algorithm for the classification of upper arm motions;where this algorithm was mainly used in face recognition and voice recognition. Also a comparison between the Linear Discriminant Analysis (LDA) and k-Nearest Neighbor (k-NN) algorithm is made for the classification of upper arm motions. The obtained results demonstrate superior performance of LDA to k-NN. The classification results give very accurate classification with very small classification errors. This paper is organized as follows: Muscle Anatomy, Data Classification Methods, Theory of Linear Discriminant Analysis, k-Nearest Neighbor (kNN) Algorithm, Modeling of EMG Pattern Recognition, EMG Data Generator, Electromyography Feature Extraction, Implemented System Results and Discussions, and finally, Conclusions. The proposed structure is simulated using MATLAB. 展开更多
关键词 Linear DISCRIMINANT Analysis (LDA) k-nearest neighbor (k-nn)
下载PDF
弹性核k-NN分类算法及其在药物构效关系中的应用 被引量:1
11
作者 黄新 罗逸平 +1 位作者 王梦贤 周密 《湖南城市学院学报(自然科学版)》 CAS 2019年第4期47-51,共5页
核方法利用核函数可以有效地解决非线性问题,在药物构效关系领域得到了广泛的应用﹒本文提出了一种新的弹性核k-最近邻算法(EKk-NN)﹒首先,基于加权多项式核和径向基函数核构造了一种信息丰富的弹性核,所构造的弹性核能有效地利用局部... 核方法利用核函数可以有效地解决非线性问题,在药物构效关系领域得到了广泛的应用﹒本文提出了一种新的弹性核k-最近邻算法(EKk-NN)﹒首先,基于加权多项式核和径向基函数核构造了一种信息丰富的弹性核,所构造的弹性核能有效地利用局部核和全局核的优点,同时也为构造核函数提供了一种可行的方法;然后,在核方法的框架下,将弹性核耦合到k-最近邻算法﹒实际数据集的实验和分析表明,EKk-NN能明显提高分类性能﹒ 展开更多
关键词 核方法 k-最近邻 构效关系 弹性核
下载PDF
面向颗粒状农产品的分选方法 被引量:1
12
作者 罗晶 郎文辉 许建平 《传感器与微系统》 CSCD 2016年第12期66-68,71,共4页
为提高颗粒状农产品分选精度,提出了一种基于现场可编程门阵列(FPGA)的k最近邻(k-NN)方法。该方法分两步:第一步对基于FPGA的彩色线阵CCD成像系统得到的图像在PC上进行保存,并对得到的图像进行特征提取,然后用k-NN方法对提取的特征进行... 为提高颗粒状农产品分选精度,提出了一种基于现场可编程门阵列(FPGA)的k最近邻(k-NN)方法。该方法分两步:第一步对基于FPGA的彩色线阵CCD成像系统得到的图像在PC上进行保存,并对得到的图像进行特征提取,然后用k-NN方法对提取的特征进行特征筛选得到最优特征集。第二步将训练好的最优特征集放在FPGA的ROM上,FPGA对线阵CCD得到的图像数据实时提取特征与ROM上最优特征集做距离计算实现k-NN分选算法。对花生和开心果两种颗粒状农产品用该方法进行实验,以RGB颜色空间为主要特征,结果表明:在选择合理特征个数和k值情况下对花生和开心果的分选正确率都达到了95%以上。 展开更多
关键词 k最近邻 现场可编程门阵列 特征筛选 分选 花生 开心果
下载PDF
短文本数据的自动分类
13
作者 宋东风 张志浩 《微型电脑应用》 2007年第2期19-21,4-5,共3页
本文以比较购物搜索中的商品数据自动分类为应用背景,探讨短文本数据的分类问题,比较了常用的文本分类(Text Categorization)算法的特点,在此基础上提出k-NN与NB相结合的多分类器方案,对于NB算法分类不可信的情况下改用k-NN算法进行再... 本文以比较购物搜索中的商品数据自动分类为应用背景,探讨短文本数据的分类问题,比较了常用的文本分类(Text Categorization)算法的特点,在此基础上提出k-NN与NB相结合的多分类器方案,对于NB算法分类不可信的情况下改用k-NN算法进行再次分类,并充分利用NB的中间结果供k-NN剪枝时作参考。实验数据表明该方法在与NB相近的时间复杂度下可明显地提高短文本分类的正确率和召回率,达到实际应用的要求。 展开更多
关键词 文本分类 短文本 朴素贝页斯k 近邻
下载PDF
基于多尺度信息熵的雷达辐射源信号识别 被引量:21
14
作者 黄颖坤 金炜东 +1 位作者 葛鹏 李冰 《电子与信息学报》 EI CSCD 北大核心 2019年第5期1084-1091,共8页
随着雷达信号的日益复杂,从实数序列中提取特征变得越来越困难,但当它们表示成符号序列时,通常能更容易地挖掘出有效的特征参数。因此,该文提出一种基于多尺度信息熵(MSIE)的雷达信号识别方法。首先通过符号聚合近似(SAX)算法在不同字... 随着雷达信号的日益复杂,从实数序列中提取特征变得越来越困难,但当它们表示成符号序列时,通常能更容易地挖掘出有效的特征参数。因此,该文提出一种基于多尺度信息熵(MSIE)的雷达信号识别方法。首先通过符号聚合近似(SAX)算法在不同字符集尺度下将雷达信号转换为符号化序列;然后联合各符号序列的信息熵值,组成MSIE特征向量;最后,使用k邻近算法(k-NN)作为分类器实现雷达信号的分类识别。通过仿真6种典型的雷达信号进行验证,结果表明该方法在信噪比(SNR)为5 dB时,不同雷达信号的识别正确率大于90%,并且优于传统的基于复杂度特征(盒维数和稀疏性)的识别方法。 展开更多
关键词 雷达信号识别 符号聚合近似算法 多尺度信息熵 k邻近算法
下载PDF
案例推理中属性约简及其性能评价 被引量:12
15
作者 李锋刚 倪志伟 +1 位作者 杨善林 黄玲 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第z1期1025-1029,共5页
在案例推理技术中,属性集合表征了对系统有影响的各种因子的集合,属性的选择和约简成为决定系统性能的关键因素。该文在分析属性约简技术的基础上,研究了基于熵的两种属性选择策略,即信息增益法和增益比率法,用层次化k-fo ld交叉验证和k... 在案例推理技术中,属性集合表征了对系统有影响的各种因子的集合,属性的选择和约简成为决定系统性能的关键因素。该文在分析属性约简技术的基础上,研究了基于熵的两种属性选择策略,即信息增益法和增益比率法,用层次化k-fo ld交叉验证和k-近邻(k-NN)相结合的技术,设计了5种方案,分别从不同角度来考察两种属性选择策略对案例分类性能的影响。实验结果表明,基于熵的属性选择策略能找到一个充分分离案例类别的属性子集,改善属性的表示空间。 展开更多
关键词 案例推理 属性约简 k-fold交叉验证 k-近邻(k-nn)方法
原文传递
多分类器联合虚警可控的海上小目标检测方法 被引量:3
16
作者 薛安克 毛克成 张乐 《电子与信息学报》 EI CSCD 北大核心 2023年第7期2528-2536,共9页
模式识别技术已经广泛应用于海上目标检测,其中二分类的模式识别算法在处理该问题时会面临类别非均衡的困境。传统方法一般通过添加人工仿真目标回波扩充目标数据集,检测结果容易受到仿真精度的影响,且增加算法的复杂度。该文提出一种... 模式识别技术已经广泛应用于海上目标检测,其中二分类的模式识别算法在处理该问题时会面临类别非均衡的困境。传统方法一般通过添加人工仿真目标回波扩充目标数据集,检测结果容易受到仿真精度的影响,且增加算法的复杂度。该文提出一种基于多分类思想的多特征海上小目标智能检测方法,先对海杂波数据与目标数据进行多维特征提取,构建高维特征空间;再基于多分类思想中的“1对1”方法,将海杂波特征空间划分成多个子空间,每个杂波子空间与目标数据特征空间等大,构造多个二分类器进行联合判决。该文选取的二分类器为改进的双参数K近邻(K-NN)算法,可有效调节虚警率。经冰多参数成像X波段雷达(IPIX)数据集验证,所提方法在观测时间为1.024 s时获得了82.40%的检测概率,与基于K-NN的检测器做比较,获得了2%的性能提升。 展开更多
关键词 海杂波 小目标检测 多分类 双参数寻优k近邻(k-nn)算法 可控虚警
下载PDF
改进混合二进制蝗虫优化特征选择算法 被引量:3
17
作者 赵泽渊 代永强 《计算机科学与探索》 CSCD 北大核心 2021年第7期1339-1349,共11页
特征选择是从数据集的原始特征中选出最优或较优特征子集,从而在加快分类速度的同时提高分类准确率。提出了一种改进的混合二进制蝗虫优化特征选择算法:通过引入步长引导个体位置变化的二进制转化策略,降低了进制转换的盲目性,提高了算... 特征选择是从数据集的原始特征中选出最优或较优特征子集,从而在加快分类速度的同时提高分类准确率。提出了一种改进的混合二进制蝗虫优化特征选择算法:通过引入步长引导个体位置变化的二进制转化策略,降低了进制转换的盲目性,提高了算法在解空间中的搜索性能;通过引入混合复杂进化方法,将蝗虫群体划分子群并独立进化,提高了算法的多样性,降低了早熟收敛的概率。采用改进算法对UCI部分数据集进行特征选择,使用K-NN分类器对特征子集进行分类评价,实验结果表明:与基本二进制蝗虫优化算法、二进制粒子群优化算法和二进制灰狼优化算法相比,改进算法具有较优的搜索性能、收敛性能与较强的鲁棒性,能够获得更好的特征子集,取得更好的分类效果。 展开更多
关键词 二进制 蝗虫优化算法 混合复杂进化方法 特征选择 分类 k邻近(k-nn)算法
下载PDF
基于MapReduce和Spark的大规模压缩模糊K-近邻算法 被引量:3
18
作者 王谟瀚 翟俊海 齐家兴 《计算机工程》 CAS CSCD 北大核心 2020年第11期139-147,共9页
压缩模糊K-近邻(CFKNN)算法仅适用于中小数据环境,且其样例选择采用静态机制,导致算法不能对阈值进行动态调整从而选出最优样例。为此,对CFKNN算法进行改进,将其扩展到大规模数据环境,提出分别基于MapReduce和Spark的2种大规模压缩模糊K... 压缩模糊K-近邻(CFKNN)算法仅适用于中小数据环境,且其样例选择采用静态机制,导致算法不能对阈值进行动态调整从而选出最优样例。为此,对CFKNN算法进行改进,将其扩展到大规模数据环境,提出分别基于MapReduce和Spark的2种大规模压缩模糊K-近邻算法。在样例选择阈值设置方面,引入动态机制,使得所选样例更具代表性。在具有7个数据节点的大数据平台上进行实验,结果表明,与CFKNN算法相比,所提2种算法具有更高的分类精度和加速比。2个平台相比,MapReduce产生的中间文件数目多于Spark,而Spark在运行时间和同步次数上优于MapReduce。 展开更多
关键词 MapReduce平台 Spark平台 模糊k-近邻 样例选择 动态机制
下载PDF
基于TBM的自适应模糊k-NN分类器 被引量:1
19
作者 刘邱云 付雪峰 吴根秀 《计算机工程》 CAS CSCD 北大核心 2009年第16期183-185,188,共4页
针对训练模式类标签不精确的识别问题,提出基于可传递信度模型的自适应模糊k-NN(k-Nearest Neighbor)分类器。利用可传递信度模型结合模糊集理论和可能性理论并运用pignistic变换,对待识别模式真正所属的类做出决策。采用梯度下降最小... 针对训练模式类标签不精确的识别问题,提出基于可传递信度模型的自适应模糊k-NN(k-Nearest Neighbor)分类器。利用可传递信度模型结合模糊集理论和可能性理论并运用pignistic变换,对待识别模式真正所属的类做出决策。采用梯度下降最小化误差函数,以实现参数的自适应学习。实验结果表明,该分类器误分类率低、鲁棒性强。 展开更多
关键词 可传递信度模型 自适应 k-nn分类器 pignistic概率 梯度下降
下载PDF
基于改进K-NN和SVM的多学科协作诊疗决策支持系统 被引量:1
20
作者 李晓峰 王妍玮 李东 《计算机系统应用》 2020年第6期80-88,共9页
由于当前的诊疗决策支持系统采用单一学科的决策方法,导致诊疗精度不高,获取的数据分类结果准确率较低,提出并设计一种基于改进K-NN(K-Nearest Neighbour)分类算法和SVM(Support Vector Mechine)的多学科协作诊疗决策支持系统.在构建系... 由于当前的诊疗决策支持系统采用单一学科的决策方法,导致诊疗精度不高,获取的数据分类结果准确率较低,提出并设计一种基于改进K-NN(K-Nearest Neighbour)分类算法和SVM(Support Vector Mechine)的多学科协作诊疗决策支持系统.在构建系统总体框架的基础上,对数据库系统模块、人机交互模块和诊疗推理模块进行设计,其中诊疗推理模块是系统的软件核心,通过改进K-NN分类算法和SVM建立推理引擎,在计算机的辅助下,搜索与患者病症信息相似的医疗案例,并进行相似度匹配,根据匹配结果与患者症状集构建一个新的临床案例,引入CDA(Clinical Document Architecture)概念,实现改进K-NN分类算法和SVM算法的有效融合,完成多学科协作诊疗决策.实验结果表明,与传统系统相比,该系统的诊疗决策精度高,评价指标测试平均值达到95.98%,分类结果准确率较高,在该系统辅助下能提高医生诊断正确性,降低误诊率,且运算复杂度较低. 展开更多
关键词 改进k-nn分类算法 SVM 多学科协作 诊疗决策支持系统
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部