We investigate a generalized form of the Boussinesq equation, relevant for nerve pulse propagation in biological membranes. The generalized conditional symmetry (GCS) method is applied in order to obtain the conditi...We investigate a generalized form of the Boussinesq equation, relevant for nerve pulse propagation in biological membranes. The generalized conditional symmetry (GCS) method is applied in order to obtain the conditions that enable the equation to admit a special class of second-order GCSs. For the case of quadratic nonlinearities, we outline a new class of invariant solutions.展开更多
Poschl-Teller double-ring-shaped Coulomb (PTDRSC) potential, the Coulomb potential surrounded by PSschl- Teller and double-ring-shaped inversed square potential, is put forward. In spherical polar coordinates, PTDRS...Poschl-Teller double-ring-shaped Coulomb (PTDRSC) potential, the Coulomb potential surrounded by PSschl- Teller and double-ring-shaped inversed square potential, is put forward. In spherical polar coordinates, PTDRSC potential has supersymmetry and shape invariance in φ,θ and τ coordinates. By using the method of supersymmetry and shape invariance, exact bound state solutions of Schr6dinger equation with PTDRSC potential are presented. The normalized φ,θ angular wave function expressed in terms of Jacobi polynomials and the normalized radial wave function expressed in terms of Laguerre polynomials are presented. Energy spectrum equations are obtained. Wave function and energy spectrum equations of the system are related to three quantum numbers and parameters of PTDRSC potential. The solutions of wave functions and corresponding eigenvalues are only suitable for the PTDRSC potential.展开更多
文摘We investigate a generalized form of the Boussinesq equation, relevant for nerve pulse propagation in biological membranes. The generalized conditional symmetry (GCS) method is applied in order to obtain the conditions that enable the equation to admit a special class of second-order GCSs. For the case of quadratic nonlinearities, we outline a new class of invariant solutions.
基金Project supported by the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province of China (Grant No. 05KJD140252)the Natural Science Foundation of Jiangsu Province of China (Grant No. KB2008199)
文摘Poschl-Teller double-ring-shaped Coulomb (PTDRSC) potential, the Coulomb potential surrounded by PSschl- Teller and double-ring-shaped inversed square potential, is put forward. In spherical polar coordinates, PTDRSC potential has supersymmetry and shape invariance in φ,θ and τ coordinates. By using the method of supersymmetry and shape invariance, exact bound state solutions of Schr6dinger equation with PTDRSC potential are presented. The normalized φ,θ angular wave function expressed in terms of Jacobi polynomials and the normalized radial wave function expressed in terms of Laguerre polynomials are presented. Energy spectrum equations are obtained. Wave function and energy spectrum equations of the system are related to three quantum numbers and parameters of PTDRSC potential. The solutions of wave functions and corresponding eigenvalues are only suitable for the PTDRSC potential.