期刊文献+

Nerve pulse propagation in biological membranes: Solitons and other invariant solutions

Nerve pulse propagation in biological membranes: Solitons and other invariant solutions
原文传递
导出
摘要 We investigate a generalized form of the Boussinesq equation, relevant for nerve pulse propagation in biological membranes. The generalized conditional symmetry (GCS) method is applied in order to obtain the conditions that enable the equation to admit a special class of second-order GCSs. For the case of quadratic nonlinearities, we outline a new class of invariant solutions.
出处 《International Journal of Biomathematics》 2016年第5期185-197,共13页 生物数学学报(英文版)
关键词 Generalized Boussinesq equation generalized conditional symmetries invari- ant solutions Riccati equation solitary solutions. 神经脉冲 广义Boussinesq方程 生物膜 传播 二次非线性 条件对称 GCS
  • 相关文献

参考文献16

  • 1G. W. Bluman and J. D. Cole, The general similarity solution of the heat equation, J. Math. Mech. 18 (1969) 1025-1042. 被引量:1
  • 2G. W. Bluman and S. Kumei, Symmetries and Differential Equations (Springer, New York, 1989). 被引量:1
  • 3R. Cimpoiasu, V. Cimpoiasu and R. Constantinescu, Nonlinear dynamical systems in various space-time dimensions, Romanian J. Phys. 55 (2010) 25-35. 被引量:1
  • 4R. Cimpoiasu and R. Constantinescu, The inverse symmetry problem for a 2D gen- eralized second-order evolutionary equation, Nonlinear Anal. 57 (2010) 147-154. 被引量:1
  • 5P. A. Clarkson and M. D. Kruskal, New similarity solutions of the Boussinesq equa- tion, J. Math. Phys. 30 (1989) 2201-2213. 被引量:1
  • 6R. Constantinescu, The generalized Koszul differential in the BRST quantization, J. Math. Phys. 38 (1997) 2786-2794. 被引量:1
  • 7R. Constantinescu, Generalized conditional symmetries and related solutions of the Klein-Gordon-Fock equation with central symmetry, Romanian J. Phys. 61 (2016) 77-88. 被引量:1
  • 8E. Fan, An algebraic method for finding a series of exact solutions to integrable and nonintegrable nonlinear evolution equations, J. Phys. A: Math. Gen. 36 (2003) 7009-7026. 被引量:1
  • 9T. Heimburg and A. D. Jackson, On soliton propagation in biomembranes and nerves, Proc. Natl. Acad. Sci. USA 102 (2005) 9790-9795. 被引量:1
  • 10N. K. Ibragimov, Transformation Groups Applied to Mathematical Physics (Reidel, Boston, 1985). 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部