This study documents laboratory-scale observation of the interactions between the Ni-based superalloy FGH4096 and refractories.Three different crucibles were tested—MgO,Al2O3,and MgO–spinel.We studied the variations...This study documents laboratory-scale observation of the interactions between the Ni-based superalloy FGH4096 and refractories.Three different crucibles were tested—MgO,Al2O3,and MgO–spinel.We studied the variations in the compositions of the inclusions and the alloy–crucible interface with the reaction time using scanning electron microscopy equipped with energy dispersive X-ray spectroscopy and Xray diffraction.The results showed that the MgO and MgO–spinel crucibles form MgO-containing inclusions(Al–Mg oxides and Al–Mg–Ti oxides),whereas the inclusions formed when using the Al2O3 crucible are Al2O3 and Al–Ti oxides.We observed a new MgAl2O4 phase at the inner wall of the MgO crucible,with the alloy melted in the MgO crucible exhibiting fewer inclusions.No new phase occurred at the inner wall of the Al2O3 crucible.We discuss the mechanism of interaction between the refractories and the Ni-based superalloy.Physical erosion was found to predominate in the Al2O3 crucible,whereas dissolution and chemical reactions dominated in the MgO crucible.No reaction was observed between three crucibles and the Ti of the melt although the Ti content(3.8wt%)was higher than that of Al(2.1wt%).展开更多
The electromagnetic,flow,heat transfer and inclusions motion model of the channel-type induction heating(IH)tundish was established,and the effect of the channel diameter on the metallurgical behavior of the tundish w...The electromagnetic,flow,heat transfer and inclusions motion model of the channel-type induction heating(IH)tundish was established,and the effect of the channel diameter on the metallurgical behavior of the tundish was studied.The results show that the magnetic field in the channel of the IH tundish tends to concentrate on the surface layer and the side near the coil.As the channel diameter is increased from 100 to 180 mm,the maximum value of magnetic flux density in the channel decreases by 0.125 T,and the maximum value of electromagnetic force decreases by 11.83×10^(5) N m^(-3);however,the off-center distance of magnetic field increases by 9.4 mm,and the Joule heat in the channel decreases by 1004 kW,which leads to the reduction in temperature rising rate of the tundish from 1.41 to 0.59 K min^(-1).When the channel diameter is 100,140 and 180 mm,the maximum velocity at the channel exit before heating is 0.59,0.29 and 0.18 m s^(-1),and after heating for 1800 s,it is 1.52,1.12 and 0.92 m s^(-1),respectively.In addition,the total inclusions escape ratio after heating for 1800 s with a channel diameter of 140 mm can be reduced by 12.39% compared to that before heating,and the maximum difference of escape ratios for each strand is only 4.51% and 5.32% before heating and after heating for 1800 s,respectively.Compared with the channel diameters of 100 and 180 mm,the channel diameter of 140 mm is more favorable to improve the metallurgical effect of the IH tundish.展开更多
基金This work is financially supported by the Natural Science Foundation of China(No.51974029)the Natural Science and Technology Major Project(No.2017-VI-0014-0086)and Fundamental Research Funds for the Central Universities(Nos.FRF-AT-19-013 and FRF-NP-19-003).
文摘This study documents laboratory-scale observation of the interactions between the Ni-based superalloy FGH4096 and refractories.Three different crucibles were tested—MgO,Al2O3,and MgO–spinel.We studied the variations in the compositions of the inclusions and the alloy–crucible interface with the reaction time using scanning electron microscopy equipped with energy dispersive X-ray spectroscopy and Xray diffraction.The results showed that the MgO and MgO–spinel crucibles form MgO-containing inclusions(Al–Mg oxides and Al–Mg–Ti oxides),whereas the inclusions formed when using the Al2O3 crucible are Al2O3 and Al–Ti oxides.We observed a new MgAl2O4 phase at the inner wall of the MgO crucible,with the alloy melted in the MgO crucible exhibiting fewer inclusions.No new phase occurred at the inner wall of the Al2O3 crucible.We discuss the mechanism of interaction between the refractories and the Ni-based superalloy.Physical erosion was found to predominate in the Al2O3 crucible,whereas dissolution and chemical reactions dominated in the MgO crucible.No reaction was observed between three crucibles and the Ti of the melt although the Ti content(3.8wt%)was higher than that of Al(2.1wt%).
基金funded by the National Natural Science Foundation of China(NSFC)(Grant Nos.51874033 and U1860111).
文摘The electromagnetic,flow,heat transfer and inclusions motion model of the channel-type induction heating(IH)tundish was established,and the effect of the channel diameter on the metallurgical behavior of the tundish was studied.The results show that the magnetic field in the channel of the IH tundish tends to concentrate on the surface layer and the side near the coil.As the channel diameter is increased from 100 to 180 mm,the maximum value of magnetic flux density in the channel decreases by 0.125 T,and the maximum value of electromagnetic force decreases by 11.83×10^(5) N m^(-3);however,the off-center distance of magnetic field increases by 9.4 mm,and the Joule heat in the channel decreases by 1004 kW,which leads to the reduction in temperature rising rate of the tundish from 1.41 to 0.59 K min^(-1).When the channel diameter is 100,140 and 180 mm,the maximum velocity at the channel exit before heating is 0.59,0.29 and 0.18 m s^(-1),and after heating for 1800 s,it is 1.52,1.12 and 0.92 m s^(-1),respectively.In addition,the total inclusions escape ratio after heating for 1800 s with a channel diameter of 140 mm can be reduced by 12.39% compared to that before heating,and the maximum difference of escape ratios for each strand is only 4.51% and 5.32% before heating and after heating for 1800 s,respectively.Compared with the channel diameters of 100 and 180 mm,the channel diameter of 140 mm is more favorable to improve the metallurgical effect of the IH tundish.