Inconel 600 alloy is widely utilized for high temperature environment application due to the corresponding good oxidation and corrosion resistance properties.In order to estimate the high temperature oxidation resista...Inconel 600 alloy is widely utilized for high temperature environment application due to the corresponding good oxidation and corrosion resistance properties.In order to estimate the high temperature oxidation resistance of Inconel 600 alloy at various temperatures,the oxidation weight gain of all specimens was measured and fitted for the curve at the temperatures of 700,800 and 900 ℃ for exposure time of 100 h.The surface morphology and the component of the oxide film were analyzed by scanning electron microscopy(SEM),energy-dispersive spectroscopy(EDS) and X-ray diffraction(XRD).The results indicate that the high temperature oxidation resistance of Inconel 600 alloy is excellent blew 800℃ due to the oxidation kinetic curves at different temperatures corresponding to the parabola dynamic rules.This means that the oxidation film protects the substrate well.The dense oxide layer formation containing Cr_(2)O_(3) and NiCr_(2)O_(4) at 700 and 800 ℃ and MnCr_(2)O_(4) at 900 ℃,respectively,is the main reason for the good oxidation resistance.In contrast,the oxide layer peels off easily under applied force as the temperature increases beyond 800℃, on account of the complicated compositions of the oxide film and the binding force between the oxide layer and the substrate weakening.Corresponding oxidation mechanism is expected to be understood and the oxidation resistance of Inconel 600 alloy is improved through binding force enhancement.展开更多
In this paper, Ductility Dip Cracking (DDC) susceptibility in Inconel600 companion Filler Metal 82 (FM82) under different stress states is investigated. Inconel600 is a Ni-Cr-Fe alloy with excellent resistance to ...In this paper, Ductility Dip Cracking (DDC) susceptibility in Inconel600 companion Filler Metal 82 (FM82) under different stress states is investigated. Inconel600 is a Ni-Cr-Fe alloy with excellent resistance to general corrosion, localized corrosion, and stress corrosion, which has been widely used in nuclear power plants. However, the companion FM82 has been shown to be susceptible to DDC in welding process. To resolve the problem, this work is mainly focused on evaluating DDC susceptibility in FM82 in welding process. First of all, Strain to Fracture (STF) test is used to achieve the DDC criterion under simple stress state, and the formation mechanism of DDC was explained. Real welding is a process with complex stress state. Later, to get the DDC susceptibility under complex stress state, models about multi-pass welding were built up by means of finite element method. According to numerical simulation results, relationship of deformation and temperature history is achieved. Moreover, susceptible locations and moments could be determined associated with STF results. The simulation results fairly agree with welding experiment from another research.展开更多
基金financially supported by the National Key Research and Development Program of China(No.2012AA03A501)。
文摘Inconel 600 alloy is widely utilized for high temperature environment application due to the corresponding good oxidation and corrosion resistance properties.In order to estimate the high temperature oxidation resistance of Inconel 600 alloy at various temperatures,the oxidation weight gain of all specimens was measured and fitted for the curve at the temperatures of 700,800 and 900 ℃ for exposure time of 100 h.The surface morphology and the component of the oxide film were analyzed by scanning electron microscopy(SEM),energy-dispersive spectroscopy(EDS) and X-ray diffraction(XRD).The results indicate that the high temperature oxidation resistance of Inconel 600 alloy is excellent blew 800℃ due to the oxidation kinetic curves at different temperatures corresponding to the parabola dynamic rules.This means that the oxidation film protects the substrate well.The dense oxide layer formation containing Cr_(2)O_(3) and NiCr_(2)O_(4) at 700 and 800 ℃ and MnCr_(2)O_(4) at 900 ℃,respectively,is the main reason for the good oxidation resistance.In contrast,the oxide layer peels off easily under applied force as the temperature increases beyond 800℃, on account of the complicated compositions of the oxide film and the binding force between the oxide layer and the substrate weakening.Corresponding oxidation mechanism is expected to be understood and the oxidation resistance of Inconel 600 alloy is improved through binding force enhancement.
基金Acknowledgements This research was sponsored by the National Natural Science Foundation of China (Grant No. 50975176).
文摘In this paper, Ductility Dip Cracking (DDC) susceptibility in Inconel600 companion Filler Metal 82 (FM82) under different stress states is investigated. Inconel600 is a Ni-Cr-Fe alloy with excellent resistance to general corrosion, localized corrosion, and stress corrosion, which has been widely used in nuclear power plants. However, the companion FM82 has been shown to be susceptible to DDC in welding process. To resolve the problem, this work is mainly focused on evaluating DDC susceptibility in FM82 in welding process. First of all, Strain to Fracture (STF) test is used to achieve the DDC criterion under simple stress state, and the formation mechanism of DDC was explained. Real welding is a process with complex stress state. Later, to get the DDC susceptibility under complex stress state, models about multi-pass welding were built up by means of finite element method. According to numerical simulation results, relationship of deformation and temperature history is achieved. Moreover, susceptible locations and moments could be determined associated with STF results. The simulation results fairly agree with welding experiment from another research.