期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
提升KPCA方法特征抽取效率的算法设计 被引量:3
1
作者 徐勇 杨静宇 陆建峰 《中国工程科学》 2005年第10期38-42,共5页
在PCA基础上发展出的KPCA方法能抽取样本的非线性特征分量。然而,基于KPCA的特征抽取需计算所有训练样本与待抽取特征的样本间的核函数,因此,训练集的大小制约着特征抽取的效率。为了提高效率,假设特征空间中变换轴可由一部分训练样本(... 在PCA基础上发展出的KPCA方法能抽取样本的非线性特征分量。然而,基于KPCA的特征抽取需计算所有训练样本与待抽取特征的样本间的核函数,因此,训练集的大小制约着特征抽取的效率。为了提高效率,假设特征空间中变换轴可由一部分训练样本(节点)线性表出,并设计了改进的KPCA算法(IKPCA)。该算法抽取某样本特征时,只需计算该样本与节点间的核函数即可。实验结果显示,IKPCA在对应较好性能的同时,具有明显的效率上的优势。 展开更多
关键词 KPCA ikpca 特征抽取 特征空间
下载PDF
基于SMOTE-IKPCA-SeNet深度迁移学习的小批量生产质量预测研究 被引量:1
2
作者 杨剑锋 崔少红 +1 位作者 段家琦 王宁 《工业工程》 2024年第2期98-106,157,共10页
随着智能制造技术的发展和客户个性化需求的增加,多品种小批量生产方式逐渐成为制造业的主流。面向大批量生产、以统计过程控制为核心的质量管理方式并不适用于小批量生产。针对复杂生产过程存在参数多、非线性和交互作用的问题,提出利... 随着智能制造技术的发展和客户个性化需求的增加,多品种小批量生产方式逐渐成为制造业的主流。面向大批量生产、以统计过程控制为核心的质量管理方式并不适用于小批量生产。针对复杂生产过程存在参数多、非线性和交互作用的问题,提出利用深度迁移学习的方式将历史生产数据作为源域迁移至小样本目标产品数据进行质量预测。首先,通过合成少数类过采样技术(synthetic minority over-sampling technique,SMOTE)和改进的核主成分分析(improved kernel principal component analysis,IKPCA)算法筛选源域和目标域的可迁移特征,这不仅兼顾了特征重要性和可迁移性,还减少了“负迁移”,提高了模型泛化能力;然后,采用结合通道注意力机制的卷积神经网络SeNet构建基于深度迁移学习的质量预测模型。仿真结果表明,随着目标域样本的增加,所提方法的预测准确性明显优于广泛采用的支持向量机建模方法。同时,所提可迁移特征筛选方法显著提高了深度迁移学习的质量预测效果,为复杂的小批量生产过程质量保证提供了新方法。 展开更多
关键词 小批量生产质量预测 深度迁移学习 SMOTE ikpca SeNet
下载PDF
一种改进的多模态过程故障检测方法 被引量:3
3
作者 杨青 马贵昌 《沈阳理工大学学报》 CAS 2017年第3期48-53,共6页
针对传统单模态故障检测方法对多模态工业过程故障检测准确率和效率低的问题,提出将变分模态分解(VMD),独立主元分析(ICA)和核主成分分析KPCA相结合的联合故障检测方法 VMD-IKPCA应用于多模态故障检测。首先,在对样本数据进行模态聚类之... 针对传统单模态故障检测方法对多模态工业过程故障检测准确率和效率低的问题,提出将变分模态分解(VMD),独立主元分析(ICA)和核主成分分析KPCA相结合的联合故障检测方法 VMD-IKPCA应用于多模态故障检测。首先,在对样本数据进行模态聚类之后,应用VMD对多模态过程数据进行滤波、降噪处理,通过ICA对处理过后的数据进行主元提取并应用KPCA对提取的主元变量进行故障检测。该方法的有效性通过多模态TE过程的故障检测进行验证,并与传统KPCA方法进行比较。实验结果表明,VMD-IKPCA对多模态过程故障检测有效性好,准确率高。 展开更多
关键词 多模态过程 故障检测 VMD ikpca TE过程
下载PDF
基于增量核主成分分析的数据流在线分类框架 被引量:12
4
作者 吴枫 仲妍 吴泉源 《自动化学报》 EI CSCD 北大核心 2010年第4期534-542,共9页
核主成分分析(Kernel principal component analysis,KPCA)是一种非线性降维工具,在降低数据流分类处理量方面发挥着积极作用.然而,由于复杂性太高,导致KPCA的降维能力有限.为此,本文给出了一种增量核主成分分析算法(Incremental KPCA f... 核主成分分析(Kernel principal component analysis,KPCA)是一种非线性降维工具,在降低数据流分类处理量方面发挥着积极作用.然而,由于复杂性太高,导致KPCA的降维能力有限.为此,本文给出了一种增量核主成分分析算法(Incremental KPCA for dimensionality-reduction,IKDR),该算法在每步迭代估计中只需线性内存开销,大大降低了复杂性.在IKDR的基础上,结合BP(Back propagation)神经网络提出了数据流在线分类框架:IKOCFrame(Online classificationframe based on IKDR).通过一系列真实和人工数据集上的实验,检验了IKDR算法的收敛性,并且验证了IKOCFrame相对于同类基于成分分析的分类算法的优越性. 展开更多
关键词 降维技术 数据流分类 增量核主成分分析 独立成分分析
下载PDF
两阶段不定核支持向量机
5
作者 史娜 薛晖 汪云云 《计算机科学与探索》 CSCD 北大核心 2020年第4期598-605,共8页
近年来,在机器学习的各个领域出现了越来越多不定的度量核矩阵,使得不定核支持向量机(IKSVM)得到了广泛关注。但是,现有IKSVM算法通常不能较好地解决高维数据所带来的信息冗余和样本稀疏等问题。针对此研究现状,对现有主流的IKSVM算法... 近年来,在机器学习的各个领域出现了越来越多不定的度量核矩阵,使得不定核支持向量机(IKSVM)得到了广泛关注。但是,现有IKSVM算法通常不能较好地解决高维数据所带来的信息冗余和样本稀疏等问题。针对此研究现状,对现有主流的IKSVM算法进行了研究,并基于再生核Kre?n空间(RKKS)中对IKSVM问题的稳定化定义,从理论上证明了IKSVM问题的本质为不定核主成分分析(IKPCA)降维后空间中的支持向量机(SVM)问题,进一步地提出求解IKSVM问题的新型学习框架TP-IKSVM。TP-IKSVM通过将IKSVM问题的求解拆分为IKPCA和SVM两个阶段,充分地发挥了IKPCA在处理高维数据的信息冗余和样本稀疏等方面的优势,同时结合SVM以有效分类。在真实数据集上的实验结果表明,TP-IKSVM的分类精度优于现有主流的IKSVM算法。 展开更多
关键词 不定核 再生核Krein空间(RKKS) 不定核主成分分析(ikpca) 不定核支持向量机(IKSVM)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部