Acclimated bacteria with high ability of phenolic compound biodegradation were immobilized on granular activated carbon to form Immobilization Bacteria Activated Carbon (IBAC). Ozone and IBAC combined process was appl...Acclimated bacteria with high ability of phenolic compound biodegradation were immobilized on granular activated carbon to form Immobilization Bacteria Activated Carbon (IBAC). Ozone and IBAC combined process was applied to treat coal-gas wastewater containing phenolic compounds. Optimum ozone dosage and contact time were determined to be 18 mg/L and 20 min. Although pre-oxidation contributed little to the removal of total organic carbon (TOC), it changed the characteristics and structure of organic substance in the wastewater. By using of ozone-IBAC treatment, when influent contained 500 mg/L COD and 95 mg/L phenol, the removal rates of COD and phenol are higher than 80% and 92%. After 6 months of operation, acclimated bacteria abundance maintained above 6.1×10 3 cfu/(g carbon) and kept in dominant status. Moreover, bacteria distribute evenly on the activated carbon. The long-term steady viability and high biodegradation efficiency of acclimated bacteria are discussed according to the ecological principle.展开更多
Legacy IP address-based access control has met many challenges, because the network nodes cannot be identified accurately based on their variable IP addresses. “Locator/Identifier Split” has made it possible to buil...Legacy IP address-based access control has met many challenges, because the network nodes cannot be identified accurately based on their variable IP addresses. “Locator/Identifier Split” has made it possible to build a network access control mechanism based on the permanent identifier. With the support of “Locator/Identifier Split” routing and addressing concept, the Identifier-based Access Control (IBAC) makes net-work access control more accurate and efficient, and fits for mobile nodes’ access control quite well. Moreover, Self-verifying Identifier makes it possible for the receiver to verify the packet sender’s identity without the third part authentication, which greatly reduces the probability of “Identifier Spoofing”.展开更多
Bacteria separated from a mature filter bed of groundwater treatment plants were incubated in a culture media containing iron and manganese. A consortium of 5 strains of bacteria removing iron and manganese were obtai...Bacteria separated from a mature filter bed of groundwater treatment plants were incubated in a culture media containing iron and manganese. A consortium of 5 strains of bacteria removing iron and manganese were obtained by repeated enrichment culturing. It was shown from the experiments of effect factors that ironmanganese removal bacteria in the euhure media containing both Fe and Mn grew better than in that containing only Fe, however, they were unable to grow in the culture media containing only Mn. When comparing the bacteria biomass in the case ofp (DO) :2.8 mg/L andp (DO) :9. 0 mg/L, no significant difference was found. The engineering bacteria removing the organic and the bacteria removing iron and manganese were simuhaneously inoculated into activated carbon reactor to treat the effluent of distribution network. The experimental results showed that by using IBAC ( Immobilization Biological Activated Carbon) treatment, the removal efficiency of iron, manganese and permanganate index was more than 98% , 96% and 55% , respectively. After the influent with turbidity of 1.5 NTU, color of 25 degree and oflbnsive odor was treated, the turbidity and color of effluence were less than 0.5 NTU and 15 degree, respectively, and it was odorless. It is determined that the cooperation function of engineering bacteria and activated carbon achieved advanced drinking water treatment.展开更多
Conventional water purified processes have low removal efficiencies for low concentrations of ammonia nitrogen, nitrite nitrogen and micro-pollutants. The efficiency and mechanisms of a novel immobilized biological ac...Conventional water purified processes have low removal efficiencies for low concentrations of ammonia nitrogen, nitrite nitrogen and micro-pollutants. The efficiency and mechanisms of a novel immobilized biological activated carbon (IBAC) process to remove those pollutants from treated potable water was investigated. Operated at a hydraulic retention time of 24 minutes, the IBAC process achieved ammonia nitrogen, nitrite nitrogen and organic micro-pollutants (measured as COD equivalent) removal efficiencies of 95%, 96% and 37%, respectively. A GC/MS analysis of the organic micro-pollutants revealed that the initial 24 organic compounds in the in-coming water were reduced to 7 after the IBAC treatment. The organic micro-pollutant removal efficiency decreased with decreasing in-coming concentrations. Pollutant reduction in the IBAC process was achieved by a rapid physical adsorption on the activated carbon, which effectively retained the pollutants in the system despite the short hydraulic retention time, followed by a slower biological enzymatic degradation of the pollutants.展开更多
The removal of disinfection by-products formation potential(DBPFP) in artificially intensified biological activated carbon(IBAC) process which is developed on the basis of traditional ozone granular activated carbon w...The removal of disinfection by-products formation potential(DBPFP) in artificially intensified biological activated carbon(IBAC) process which is developed on the basis of traditional ozone granular activated carbon was evaluated. By IBAC removals of 31% and 68% for THMFP and HAAFP were obtained respectively. Under identical conditions, the removals of the same substances were 4% and 32% respectively only by the granular activated carbon(GAC) process. Compared with GAC, the high removal rates of the two formed potential substances were due to the increasing of bioactivity of the media and the synergistic capabilities of biological degradation cooperating with activated carbon adsorption of organic compounds. A clear linear correlation(R 2=0.9562 and R 2=0.9007) between DOC HAAFP removal rate and Empty Bed Contact Time(EBCT) of IBAC process was observed, while that between THMFP removal rate and EBCT of GAC was R 2=0.9782. In addition certain linear correlations between THMFP, HAAFP and UV 254 (R 2=0.855 and R 2=0.7702) were found for the treated water. For IBAC process there are also more advantages such as long backwashing cycle time, low backwashing intensity and prolonging activated carbon lifetime and so on.展开更多
文摘Acclimated bacteria with high ability of phenolic compound biodegradation were immobilized on granular activated carbon to form Immobilization Bacteria Activated Carbon (IBAC). Ozone and IBAC combined process was applied to treat coal-gas wastewater containing phenolic compounds. Optimum ozone dosage and contact time were determined to be 18 mg/L and 20 min. Although pre-oxidation contributed little to the removal of total organic carbon (TOC), it changed the characteristics and structure of organic substance in the wastewater. By using of ozone-IBAC treatment, when influent contained 500 mg/L COD and 95 mg/L phenol, the removal rates of COD and phenol are higher than 80% and 92%. After 6 months of operation, acclimated bacteria abundance maintained above 6.1×10 3 cfu/(g carbon) and kept in dominant status. Moreover, bacteria distribute evenly on the activated carbon. The long-term steady viability and high biodegradation efficiency of acclimated bacteria are discussed according to the ecological principle.
文摘Legacy IP address-based access control has met many challenges, because the network nodes cannot be identified accurately based on their variable IP addresses. “Locator/Identifier Split” has made it possible to build a network access control mechanism based on the permanent identifier. With the support of “Locator/Identifier Split” routing and addressing concept, the Identifier-based Access Control (IBAC) makes net-work access control more accurate and efficient, and fits for mobile nodes’ access control quite well. Moreover, Self-verifying Identifier makes it possible for the receiver to verify the packet sender’s identity without the third part authentication, which greatly reduces the probability of “Identifier Spoofing”.
基金Sponsored by the National High Technology Research and Development Program of China(Grant No.2002AA601120).
文摘Bacteria separated from a mature filter bed of groundwater treatment plants were incubated in a culture media containing iron and manganese. A consortium of 5 strains of bacteria removing iron and manganese were obtained by repeated enrichment culturing. It was shown from the experiments of effect factors that ironmanganese removal bacteria in the euhure media containing both Fe and Mn grew better than in that containing only Fe, however, they were unable to grow in the culture media containing only Mn. When comparing the bacteria biomass in the case ofp (DO) :2.8 mg/L andp (DO) :9. 0 mg/L, no significant difference was found. The engineering bacteria removing the organic and the bacteria removing iron and manganese were simuhaneously inoculated into activated carbon reactor to treat the effluent of distribution network. The experimental results showed that by using IBAC ( Immobilization Biological Activated Carbon) treatment, the removal efficiency of iron, manganese and permanganate index was more than 98% , 96% and 55% , respectively. After the influent with turbidity of 1.5 NTU, color of 25 degree and oflbnsive odor was treated, the turbidity and color of effluence were less than 0.5 NTU and 15 degree, respectively, and it was odorless. It is determined that the cooperation function of engineering bacteria and activated carbon achieved advanced drinking water treatment.
文摘Conventional water purified processes have low removal efficiencies for low concentrations of ammonia nitrogen, nitrite nitrogen and micro-pollutants. The efficiency and mechanisms of a novel immobilized biological activated carbon (IBAC) process to remove those pollutants from treated potable water was investigated. Operated at a hydraulic retention time of 24 minutes, the IBAC process achieved ammonia nitrogen, nitrite nitrogen and organic micro-pollutants (measured as COD equivalent) removal efficiencies of 95%, 96% and 37%, respectively. A GC/MS analysis of the organic micro-pollutants revealed that the initial 24 organic compounds in the in-coming water were reduced to 7 after the IBAC treatment. The organic micro-pollutant removal efficiency decreased with decreasing in-coming concentrations. Pollutant reduction in the IBAC process was achieved by a rapid physical adsorption on the activated carbon, which effectively retained the pollutants in the system despite the short hydraulic retention time, followed by a slower biological enzymatic degradation of the pollutants.
文摘The removal of disinfection by-products formation potential(DBPFP) in artificially intensified biological activated carbon(IBAC) process which is developed on the basis of traditional ozone granular activated carbon was evaluated. By IBAC removals of 31% and 68% for THMFP and HAAFP were obtained respectively. Under identical conditions, the removals of the same substances were 4% and 32% respectively only by the granular activated carbon(GAC) process. Compared with GAC, the high removal rates of the two formed potential substances were due to the increasing of bioactivity of the media and the synergistic capabilities of biological degradation cooperating with activated carbon adsorption of organic compounds. A clear linear correlation(R 2=0.9562 and R 2=0.9007) between DOC HAAFP removal rate and Empty Bed Contact Time(EBCT) of IBAC process was observed, while that between THMFP removal rate and EBCT of GAC was R 2=0.9782. In addition certain linear correlations between THMFP, HAAFP and UV 254 (R 2=0.855 and R 2=0.7702) were found for the treated water. For IBAC process there are also more advantages such as long backwashing cycle time, low backwashing intensity and prolonging activated carbon lifetime and so on.