The definition of momentum operator in quantum mechanics has some foundational problems and needs to be improved. For example, the results are different in general by using momentum operator and kinetic operator to ca...The definition of momentum operator in quantum mechanics has some foundational problems and needs to be improved. For example, the results are different in general by using momentum operator and kinetic operator to calculate microparticle’s kinetic energy. In the curved coordinate systems, momentum operators can not be defined properly. When momentum operator is acted on non-eigen wave functions in coordinate space, the resulting non-eigen values are complex numbers in general. In this case, momentum operator is not the Hermitian operator again. The average values of momentum operator are complex numbers unless they are zero. The same problems exist for angle momentum operator. Universal momentum operator is proposed in this paper. Based on it, all problems above can be solved well. The logical foundation of quantum mechanics becomes more complete and the EPY momentum paradox can be eliminated thoroughly. By considering the fact that there exist a difference between the theoretical value and the real value of momentum, the concepts of auxiliary momentum and auxiliary angle momentum are introduced. The relation between auxiliary angle momentum and spin is deduced and the essence of micro-particle’s spin is revealed. In this way, the fact that spin gyro-magnetic ratio is two times of orbit gyro-magnetic ratio, as well as why the electrons of ground state without obit angle momentum do not fall into atomic nuclear can be explained well. The real reason that the Bell inequality is not supported by experiments is revealed, which has nothing to do with whether or not hidden variables exist, as well as whether or not locality is violated in microcosmic processes.展开更多
In this paper, we present some necessary and sufficient conditions for the ex- istence of solutions, hermitian solutions and positive solutions to the system of operator equations AXB = C = BXA in the setting of bound...In this paper, we present some necessary and sufficient conditions for the ex- istence of solutions, hermitian solutions and positive solutions to the system of operator equations AXB = C = BXA in the setting of bounded linear operators on a Hilbert space. Moreover, we obtain the general forms of solutions, hermitian solutions and positive solutions to the system above.展开更多
To develop a unitary quantum theory with probabilistic description for pseudo-Hermitian systems one needs to consider the theories in a different Hilbert space endowed with a positive definite metric operator. There a...To develop a unitary quantum theory with probabilistic description for pseudo-Hermitian systems one needs to consider the theories in a different Hilbert space endowed with a positive definite metric operator. There are different approaches to find such metric operators. We compare the different approaches of calculating positive definite metric operators in pseudo-Hermitian theories with the help of several explicit examples in non-relativistic as well as in relativistic situations. Exceptional points and spontaneous symmetry breaking are also discussed in these models.展开更多
设A_J∈L(V),i=1,…,m,A_1=A_1…A_m为A_1,…A_m的张量积,称D(A_1,…,A_m)=A_1I…I+IA_2I…I+…+I…IA_m为■A_i的一阶偏导算子,它的正交数值域为(D(A_1,…,A_m))={sum from i=1 to m(A_jv_j,v_j)|(v_i,v_j)=δ...设A_J∈L(V),i=1,…,m,A_1=A_1…A_m为A_1,…A_m的张量积,称D(A_1,…,A_m)=A_1I…I+IA_2I…I+…+I…IA_m为■A_i的一阶偏导算子,它的正交数值域为(D(A_1,…,A_m))={sum from i=1 to m(A_jv_j,v_j)|(v_i,v_j)=δ_(ij),i,j=1,…,m}(要求m=≤n=dimV)。本文给出了(D(A_1,…,A_m))=0,(D(A_1,…,A+m))R及D(A_1,…A_m)为厄米特算子的充要条件。展开更多
文摘The definition of momentum operator in quantum mechanics has some foundational problems and needs to be improved. For example, the results are different in general by using momentum operator and kinetic operator to calculate microparticle’s kinetic energy. In the curved coordinate systems, momentum operators can not be defined properly. When momentum operator is acted on non-eigen wave functions in coordinate space, the resulting non-eigen values are complex numbers in general. In this case, momentum operator is not the Hermitian operator again. The average values of momentum operator are complex numbers unless they are zero. The same problems exist for angle momentum operator. Universal momentum operator is proposed in this paper. Based on it, all problems above can be solved well. The logical foundation of quantum mechanics becomes more complete and the EPY momentum paradox can be eliminated thoroughly. By considering the fact that there exist a difference between the theoretical value and the real value of momentum, the concepts of auxiliary momentum and auxiliary angle momentum are introduced. The relation between auxiliary angle momentum and spin is deduced and the essence of micro-particle’s spin is revealed. In this way, the fact that spin gyro-magnetic ratio is two times of orbit gyro-magnetic ratio, as well as why the electrons of ground state without obit angle momentum do not fall into atomic nuclear can be explained well. The real reason that the Bell inequality is not supported by experiments is revealed, which has nothing to do with whether or not hidden variables exist, as well as whether or not locality is violated in microcosmic processes.
基金supported by the National Natural Science Foundation of China(11371233)
文摘In this paper, we present some necessary and sufficient conditions for the ex- istence of solutions, hermitian solutions and positive solutions to the system of operator equations AXB = C = BXA in the setting of bounded linear operators on a Hilbert space. Moreover, we obtain the general forms of solutions, hermitian solutions and positive solutions to the system above.
文摘To develop a unitary quantum theory with probabilistic description for pseudo-Hermitian systems one needs to consider the theories in a different Hilbert space endowed with a positive definite metric operator. There are different approaches to find such metric operators. We compare the different approaches of calculating positive definite metric operators in pseudo-Hermitian theories with the help of several explicit examples in non-relativistic as well as in relativistic situations. Exceptional points and spontaneous symmetry breaking are also discussed in these models.
文摘设A_J∈L(V),i=1,…,m,A_1=A_1…A_m为A_1,…A_m的张量积,称D(A_1,…,A_m)=A_1I…I+IA_2I…I+…+I…IA_m为■A_i的一阶偏导算子,它的正交数值域为(D(A_1,…,A_m))={sum from i=1 to m(A_jv_j,v_j)|(v_i,v_j)=δ_(ij),i,j=1,…,m}(要求m=≤n=dimV)。本文给出了(D(A_1,…,A_m))=0,(D(A_1,…,A+m))R及D(A_1,…A_m)为厄米特算子的充要条件。