To ensure plate heating quality and reduce energy consumption in heat-treatment process, optimal heating for plates in a roller hearth furnace was investigated and a new strategy for heating procedure optimization was...To ensure plate heating quality and reduce energy consumption in heat-treatment process, optimal heating for plates in a roller hearth furnace was investigated and a new strategy for heating procedure optimization was developed. During solving process, plate temperature forecast model based on heat transfer mechanics was established to calculate plate temperature with the assumed heating procedure. In addition, multi-objective feature of optimal heating was analyzed. And the method, which is composed of asynchronous particle swarm optimization and grey relational analysis, was adopted for solving the multi-objective problem. The developed strategy for optimizing heating has been applied to the mass production. The result indicates that the absolute plate discharging temperature deviation between measured value and target value does not exceed ± 8 ℃, and the relative deviation is less than ± 0.77%.展开更多
Owing to the development of new products and higher requirement of product properties, the current existing induction heating technology of Baosteel can no longer satisfy the new requirements of the product line. Cont...Owing to the development of new products and higher requirement of product properties, the current existing induction heating technology of Baosteel can no longer satisfy the new requirements of the product line. Control of the induction heating temperature to an appropriate value is a key consideration in induction heating technology. To obtain acculturated temperatures, investigations were focused on the parameters of an induction heating system, including those of induction heating equipment and heating processes. In these investigations, computer simulation was used to model the induction heating process, followed by physical experimentation to verify and improve the simulation model; finally, optimized induction heating parameters were suggested. The use of computer simulations dramatically decreased physical experimental times, and the computed heating parameters were used to guide the physical experimentation and design of the product line ; this increased the efficiency of subsequent investigations. This study focuses on the development of induction heating technology in Baosteel, which includes the overall induction heating technology used in manufacturing backup rollers and in the thermomechanical control process.展开更多
基金Sponsored by National Basic Research Program(973 Program) of China(2010CB630800)
文摘To ensure plate heating quality and reduce energy consumption in heat-treatment process, optimal heating for plates in a roller hearth furnace was investigated and a new strategy for heating procedure optimization was developed. During solving process, plate temperature forecast model based on heat transfer mechanics was established to calculate plate temperature with the assumed heating procedure. In addition, multi-objective feature of optimal heating was analyzed. And the method, which is composed of asynchronous particle swarm optimization and grey relational analysis, was adopted for solving the multi-objective problem. The developed strategy for optimizing heating has been applied to the mass production. The result indicates that the absolute plate discharging temperature deviation between measured value and target value does not exceed ± 8 ℃, and the relative deviation is less than ± 0.77%.
文摘Owing to the development of new products and higher requirement of product properties, the current existing induction heating technology of Baosteel can no longer satisfy the new requirements of the product line. Control of the induction heating temperature to an appropriate value is a key consideration in induction heating technology. To obtain acculturated temperatures, investigations were focused on the parameters of an induction heating system, including those of induction heating equipment and heating processes. In these investigations, computer simulation was used to model the induction heating process, followed by physical experimentation to verify and improve the simulation model; finally, optimized induction heating parameters were suggested. The use of computer simulations dramatically decreased physical experimental times, and the computed heating parameters were used to guide the physical experimentation and design of the product line ; this increased the efficiency of subsequent investigations. This study focuses on the development of induction heating technology in Baosteel, which includes the overall induction heating technology used in manufacturing backup rollers and in the thermomechanical control process.