对线性双曲型偏微分算子P(u)=utt+2b0(t)ut+c0(t)u-△u-2sum from i=1 to nbi(x)uxi-c(x)u,给出Hadamard基本解按测地距离展开的系数Ek(t,x;s,y)(k=0,1,2,…)与P(u)的系数较直接的关系,从而以E(n-1)(?)(t,x;s,y)为Huygens算子的等价条...对线性双曲型偏微分算子P(u)=utt+2b0(t)ut+c0(t)u-△u-2sum from i=1 to nbi(x)uxi-c(x)u,给出Hadamard基本解按测地距离展开的系数Ek(t,x;s,y)(k=0,1,2,…)与P(u)的系数较直接的关系,从而以E(n-1)(?)(t,x;s,y)为Huygens算子的等价条件,解析了Veselov和Berest给出的一类Huygens算子与Stellmacher算子的关系.展开更多
In this paper, a necessary and sufficient condition concerning Huygens' principle for a family of hyperbolic equations is given, and thus Stellmacher's result is extended.
文摘对线性双曲型偏微分算子P(u)=utt+2b0(t)ut+c0(t)u-△u-2sum from i=1 to nbi(x)uxi-c(x)u,给出Hadamard基本解按测地距离展开的系数Ek(t,x;s,y)(k=0,1,2,…)与P(u)的系数较直接的关系,从而以E(n-1)(?)(t,x;s,y)为Huygens算子的等价条件,解析了Veselov和Berest给出的一类Huygens算子与Stellmacher算子的关系.
文摘In this paper, a necessary and sufficient condition concerning Huygens' principle for a family of hyperbolic equations is given, and thus Stellmacher's result is extended.