摘要
对线性双曲型偏微分算子P(u)=utt+2b0(t)ut+c0(t)u-△u-2sum from i=1 to nbi(x)uxi-c(x)u,给出Hadamard基本解按测地距离展开的系数Ek(t,x;s,y)(k=0,1,2,…)与P(u)的系数较直接的关系,从而以E(n-1)(?)(t,x;s,y)为Huygens算子的等价条件,解析了Veselov和Berest给出的一类Huygens算子与Stellmacher算子的关系.
In this paper, for linear hyperbolic operator P(u) = utt + 2b0(t)ut + c0(t)u -AAAAAAAAAA-u -2sum from i=1 to nbi(x)uxi-c (x)u, the Hadamard coefficient Ek(t ,x;s,y)(k =01,2,...) of Hadamardfundamental solutions in the geodesic distance expanded form is given for resolving the relation of Huygens' operators derived from Veselov and Berest and the Stellmacher' operators by Hadamard fundamental solutions theories.
出处
《山东理工大学学报(自然科学版)》
CAS
2004年第6期42-46,共5页
Journal of Shandong University of Technology:Natural Science Edition
关键词
算子
注记
偏微分
双曲型
等价条件
基本解
系数
距离
解析
展开
Huygens' operators
Huygens' principle
stellmacher'operators
Hadamard fundamental solutions