期刊文献+
共找到94篇文章
< 1 2 5 >
每页显示 20 50 100
人工智能会是一个要命的问题吗? 被引量:23
1
作者 赵汀阳 《开放时代》 CSSCI 北大核心 2018年第6期49-54,共6页
拟人化的人工智能是一个错误的发展方向,因为欲望、情感和价值观是偏心、歧视和敌对的根据,模仿了人性和人类价值观的人工智能就和人类一样危险。创造性不在于联想和组合功能,而在于在破坏游戏规则的同时建立新的游戏规则,一旦人工智能... 拟人化的人工智能是一个错误的发展方向,因为欲望、情感和价值观是偏心、歧视和敌对的根据,模仿了人性和人类价值观的人工智能就和人类一样危险。创造性不在于联想和组合功能,而在于在破坏游戏规则的同时建立新的游戏规则,一旦人工智能获得自主建立游戏规则的创造能力就危险了。如果人工智能具备了哥德尔反思能力,就很难控制人工智能了,因此安全的人工智能必须限制在没有反思能力的图灵机水平上。 展开更多
关键词 人工智能 拟人化 哥德尔
原文传递
Godel n值命题逻辑中公式的随机真度和形式推演结论的不可靠度估计 被引量:5
2
作者 吴霞 张家录 《模糊系统与数学》 CSCD 北大核心 2012年第3期24-34,共11页
利用Godel n值命题逻辑赋值域上概率的无穷乘积,在Godeln值命题逻辑系统中引入命题公式的随机真度和不可靠度概念。证明在Godeln值逻辑系统中,一个有效推理结论的不可靠度不超过各前提的不可靠度与其必要度的乘积之和。通过不可靠度在... 利用Godel n值命题逻辑赋值域上概率的无穷乘积,在Godeln值命题逻辑系统中引入命题公式的随机真度和不可靠度概念。证明在Godeln值逻辑系统中,一个有效推理结论的不可靠度不超过各前提的不可靠度与其必要度的乘积之和。通过不可靠度在全体公式集上建立伪距离,给出基于伪距离和不可靠度的两种近似推理模式。 展开更多
关键词 godel N值逻辑系统 随机真度 不可靠度 必要度 伪距离 近似推理
原文传递
弹弓论证与恰当事实 被引量:5
3
作者 李主斌 《科学技术哲学研究》 CSSCI 北大核心 2015年第1期40-45,共6页
一个句子之为真的根据,对于符合论者来说,存在于它与恰当事实的符合中;对此论题,戴维森通过著名的弹弓论证认为,如果符合是可能的,则所有真句子都符合同一个事实。在戴维森之前,哥德尔也提示了弹弓论证的一个版本,而丘奇和蒯因则分别运... 一个句子之为真的根据,对于符合论者来说,存在于它与恰当事实的符合中;对此论题,戴维森通过著名的弹弓论证认为,如果符合是可能的,则所有真句子都符合同一个事实。在戴维森之前,哥德尔也提示了弹弓论证的一个版本,而丘奇和蒯因则分别运用它去反驳卡尔纳普的意义实体和模态逻辑。如果弹弓论证是对的,那么其结果将是毁灭性的,以符合论为例,则符合论所诉诸的"事实"概念就是一个虚假概念,因而符合论土崩瓦解。通过详细考察并分析了关于符合论的弹弓论证之两个版本,我们将看到,弹弓论证不仅在诸多层面预设颇具争议的论题,甚至基于相互矛盾的前提。文章最后,我试图提供一种刻画"恰当事实"的可能机制。 展开更多
关键词 符合论 弹弓论证 戴维森 哥德尔 恰当事实
原文传递
Charged fermions tunneling radiation from the charged Gdel black hole in minimal five-dimensional gauged supergravity 被引量:2
4
作者 LI HuiLing DENG YuFu 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2010年第10期1775-1779,共5页
In this paper,we extend fermions tunneling radiation to the case of five-dimensional charged black holes by introducing a set of appropriate matrices γμ for general covariant Dirac equation of 1/2 spin charged Dirac... In this paper,we extend fermions tunneling radiation to the case of five-dimensional charged black holes by introducing a set of appropriate matrices γμ for general covariant Dirac equation of 1/2 spin charged Dirac particles in the electromagnetic field.It is expected that our result can strengthen the validity and power of the tunneling method.We take the charged Gdel black holes in minimal five-dimensional gauged supergravity for example in order to present a reasonable extension of the tunneling method.As a result,we get fermions tunneling probability of the black hole and the Hawking temperature near the event horizon. 展开更多
关键词 charged godel black hole tunneling probability Hawking radiation Hawking temperature
原文传递
Area spectrum of the three-dimensional Godel black hole 被引量:1
5
作者 李慧玲 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第12期94-98,共5页
The aim of this paper is to investigate the area spectrum of the three-dimensional Godel black hole by using two different methods. The result shows that the area spectrum of the black hole is △A = 8πl2p, which conf... The aim of this paper is to investigate the area spectrum of the three-dimensional Godel black hole by using two different methods. The result shows that the area spectrum of the black hole is △A = 8πl2p, which confirms the initial proposal of Bekenstein that the area spectrum is independent of black hole parameters and the spacing is 8πl2p. 展开更多
关键词 area spectrum godel black hole adiabatic invariant quantity
下载PDF
G?del n值命题逻辑系统中的Δ真度 被引量:1
6
作者 朱乃调 惠小静 +1 位作者 高晓莉 高姣 《模糊系统与数学》 CSCD 北大核心 2016年第6期12-18,共7页
在G?del n值命题逻辑系统中添加了Δ算子,给出了G?del n值命题逻辑系统的Δ真度的定义及等价形式,讨论了在该系统下Δ真度的一些基本性质,论证了Δ真度的推理规则。
关键词 godel n值命题逻辑系统 Δ算子 Δ真度
原文传递
逻辑究竟是什么以及逻辑应当是什么? 被引量:3
7
作者 郝兆宽 《哲学分析》 2016年第2期46-65,共20页
对于逻辑是什么,有两种相互冲突的立场:当代哲学中流行的看法是逻辑是纯形式的,逻辑命题没有事实内容;而在弗雷格和哥德尔那里,逻辑是有关客观概念世界的科学。这两种观点都需要哲学立场的支撑,前者需要经验论或物理主义的立场,后者则... 对于逻辑是什么,有两种相互冲突的立场:当代哲学中流行的看法是逻辑是纯形式的,逻辑命题没有事实内容;而在弗雷格和哥德尔那里,逻辑是有关客观概念世界的科学。这两种观点都需要哲学立场的支撑,前者需要经验论或物理主义的立场,后者则预设了实在论或柏拉图主义。所以,流行的观点并不是哲学中立的,因此也不是更自然的或不可避免的。相反,弗雷格为数学奠定逻辑基础的努力,哥德尔成就逻辑学的伟大成果以及当代逻辑学家对连续统问题的研究都表明,实在论的立场总是能更好地解释逻辑学研究的实践。因此,我们有理由相信:把逻辑视为纯形式的观点,虽然看似自然而然,但在某种程度上是哲学史和逻辑史上的一个误解。 展开更多
关键词 逻辑观 形式 哥德尔 弗雷格 概念论 休谟原则
下载PDF
A Set-Theoretical Lemma That Implies an Abstract Form of Gdel's Theorem
8
作者 爱德华.阿罗约 徐利治 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2005年第4期647-650,共4页
We propose a simple set-theoretical lemma that implies Godel's Incompleteness Theorem. Also mentioned are some related consequences.
关键词 Enumerably infinite set godel's Incompleteness Theorem turing machines.
下载PDF
Arithmetical Proof and Open Sentences
9
作者 Neil Thompson 《Journal of Philosophy Study》 2012年第1期43-50,共8页
If the concept of proof (including arithmetic proof) is syntactically restricted to closed sentences (or their Godel numbers), then the standard accounts of Godel's Incompleteness Theorems (and Lob's Theorem) ... If the concept of proof (including arithmetic proof) is syntactically restricted to closed sentences (or their Godel numbers), then the standard accounts of Godel's Incompleteness Theorems (and Lob's Theorem) are blocked. In these standard accounts (Godel's own paper and the exposition in Boolos' Computability and Logic are treated as exemplars), it is assumed that certain formulas (notably so called "Godel sentences") containing the Godel number of an open sentence and an arithmetic proof predicate are closed sentences. Ordinary usage of the term "provable" (and indeed "unprovable") favors their restriction to closed sentences which unlike so-called open sentences can be true or false. In this paper the restricted form of provability is called strong provability or unprovability. If this concept of proof is adopted, then there is no obvious alternative path to establishing those theorems. 展开更多
关键词 godel numbers arithmetical proof godel's Incompleteness Theorems Lob's Theorem
下载PDF
Is Intuition Necessary for Defending Platonism?
10
作者 XU Difei 《Frontiers of Philosophy in China》 2015年第3期492-509,共18页
Godel asserts that his philosophy falls under the category of conceptual realism. This paper gives a general picture of GOdel's conceptual realism's basic doctrines, and gives a way to understand conceptual realism ... Godel asserts that his philosophy falls under the category of conceptual realism. This paper gives a general picture of GOdel's conceptual realism's basic doctrines, and gives a way to understand conceptual realism in the background of Leibniz's and Kant's philosophies. Among philosophers of mathematics, there is a widespread view that Platonism encounters an epistemological difficulty because we do not have sensations of abstract objects. In his writings, Grdel asserts that we have mathematical intuitions of mathematical objects. Some philosophers do not think it is necessary to resort to intuition to defend Platonism, and other philosophers think that the arguments resorting to intuition are too naive to be convincing. I argue that the epistemic difficulty is not particular to Platonism; when faced with skepticism, physicalists also need to give an answer concerning the relationship between our experience and reality. Grdel and Kant both think that sensations or combinations of sensations are not ideas of physical objects, but that, to form ideas of physical objects, concepts must be added. However, unlike Kant, Grdel thinks that concepts are not subjective but independent of our minds. Based on my analysis of Grdel's conceptual realism, I give an answer to the question in the title and show that arguments resorting to intuition are far from naive, despite what some philosophers have claimed. 展开更多
关键词 godel's conceptual realism INTUITION PHYSICALISM concepts
原文传递
一个理性主义者的精神历程──哥德尔的哲学观 被引量:1
11
作者 刘晓力 《哲学研究》 CSSCI 北大核心 1998年第3期55-61,共7页
关键词 哥德尔 柏拉图主义 理性主义者 数学哲学 精神历程 科学的哲学 godel 数学观 莱布尼茨 数学真理
原文传递
试论罗素和弗雷格在真语句指称问题上的分歧——从3个弹弓论证谈起 被引量:1
12
作者 胡中俊 《重庆理工大学学报(社会科学)》 CAS 2018年第2期16-21,共6页
在真语句指称什么这个问题上,罗素和弗雷格的观点并不一样,前者认为真语句对应着事实,而后者则认为所有的真语句都指称真。丘奇、戴维森和哥德尔的弹弓论证表明真语句将有同一个指称。在某种程度上,这些弹弓论证支持了弗雷格的观点而反... 在真语句指称什么这个问题上,罗素和弗雷格的观点并不一样,前者认为真语句对应着事实,而后者则认为所有的真语句都指称真。丘奇、戴维森和哥德尔的弹弓论证表明真语句将有同一个指称。在某种程度上,这些弹弓论证支持了弗雷格的观点而反驳了罗素的观点。尼尔认为,摹状词理论可以使得罗素的立场不受弹弓论证的影响。然而,即使如此,真语句指称事实的观点还面临着其他的困难。 展开更多
关键词 弹弓论证 真语句指称 丘奇 戴维森 哥德尔
下载PDF
Godcl的完全性定理与早期数学哲学思想
13
作者 刘晓力 《自然辩证法通讯》 CSSCI 北大核心 1996年第6期9-15,共7页
Godel以其三大数学贡献闻名于世,Godel定理甚至被各个领域的人津津乐道。然而很少有人关注在他的巨大数学成就背后丰富而深刻的哲学思想。本文借助原始资料,通过对完全性定理证明与Gdel早期数学哲学思想的分析,试图揭... Godel以其三大数学贡献闻名于世,Godel定理甚至被各个领域的人津津乐道。然而很少有人关注在他的巨大数学成就背后丰富而深刻的哲学思想。本文借助原始资料,通过对完全性定理证明与Gdel早期数学哲学思想的分析,试图揭示他超越同时代人的深刻之处,并且指出,说Godel从二十年代后期起就是一个数学实在论者并不缺少证据。 展开更多
关键词 godel 完全性定理 数学哲学
下载PDF
Gdel宇宙模型在理想流体条件下的一个近似解
14
作者 杨淑敏 张伟 周向玲 《四川理工学院学报(自然科学版)》 CAS 2009年第3期18-20,共3页
在引力源为理想流体条件下,通过对Gdel宇宙基本性质的分析求解了Einstein场方程,给出了一个Gdel宇宙时空度规的近似解。并且对此解进行了分析。结果表明,在参量f(x)的两种不同情况下,Gdel宇宙将分别表现出静态与膨胀的特征。对于膨... 在引力源为理想流体条件下,通过对Gdel宇宙基本性质的分析求解了Einstein场方程,给出了一个Gdel宇宙时空度规的近似解。并且对此解进行了分析。结果表明,在参量f(x)的两种不同情况下,Gdel宇宙将分别表现出静态与膨胀的特征。对于膨胀宇宙,H的取值主要依赖于λ、k以及σ等模型参数。 展开更多
关键词 度规 Gdel 宇宙模型 EINSTEIN场方程
下载PDF
物理学中隐藏的一条数学公理
15
作者 黄乘规 《常州工学院学报》 2000年第2期19-22,共4页
本文首先介绍了Gdel的不完全性定理和不可判定的概念。其次指出在二阶的标准分析模型M中,普遍存在不可判定的积分公式,如A_6:integral from n=0 to =∞sintdt=1等。第三,本文介绍了物理学Coulomb散射中的通用的数学公式(3,1):integral f... 本文首先介绍了Gdel的不完全性定理和不可判定的概念。其次指出在二阶的标准分析模型M中,普遍存在不可判定的积分公式,如A_6:integral from n=0 to =∞sintdt=1等。第三,本文介绍了物理学Coulomb散射中的通用的数学公式(3,1):integral from ((d^3x/|x|)e^(-iq·x)=4π/|q|~2并证明了A_6和(3,1)的等价性。第四,根据Gdel的不完全性定理和不可判定的概念,本文认为(3,1),或等价地数学公式A_6可以作为物理学中使用的局部的数学公理。 展开更多
关键词 数学公理 不可判定性 物理学 不完全性定理
下载PDF
重指:元语言的一种属性——从悖论和哥德尔不完全性定理说起
16
作者 陈保亚 陈樾 《北京大学学报(哲学社会科学版)》 CSSCI 北大核心 2012年第4期95-105,共11页
语义悖论和哥德尔不完全性定理都和语言符号的重指有关系。重指是不同层阶语言之间的循环指称。避免重指需要在对象语言和元语言之间进行无限分层,但语言的单位和规则是有限的,元语言的层阶不允许是无限的,否则会造成无限的单位和规则... 语义悖论和哥德尔不完全性定理都和语言符号的重指有关系。重指是不同层阶语言之间的循环指称。避免重指需要在对象语言和元语言之间进行无限分层,但语言的单位和规则是有限的,元语言的层阶不允许是无限的,否则会造成无限的单位和规则。元语言的层阶划分必须有限,这是一种协调原则,这样就必然产生循环指称或重指。重指是元语言符号系统的一种性质,是悖论和形式系统不完全性得以存在的语言学条件。复杂的语言符号系统一方面促进了复杂的思维活动,另一方面也因为重指的存在使高层面的演绎推理活动存在不一致性或不完全性。 展开更多
关键词 元语言 自指 哥德尔 悖论 维特根斯坦
原文传递
Gdel宇宙模型在真空条件下的一个近似解
17
作者 杨淑敏 张伟 周向玲 《喀什师范学院学报》 2009年第3期32-33,共2页
在真空情况下,通过求解Einstein场方程,给出了一个关于膨胀的Gdel宇宙时空度规的近似解.并且对此解进行了分析.
关键词 度规 Gdel 宇宙模型 EINSTEIN场方程
下载PDF
Generalized Lob’s Theorem.Strong Reflection Principles and Large Cardinal Axioms
18
作者 J.Foukzon E.R.Men’kova 《Advances in Pure Mathematics》 2013年第3期368-373,共6页
In this article, a possible generalization of the Lob’s theorem is considered. Main result is: let κ be an inaccessible cardinal,
关键词 Lob’s Theorem Second godel Theorem CONSISTENCY Formal System Uniform Reflection Principles ω-Model of ZFC Standard Model of ZFC Inaccessible Cardinal
下载PDF
The Prime Sequence: Demonstrably Highly Organized While Also Opaque and Incomputable-With Remarks on Riemann’s Hypothesis, Partition, Goldbach’s Conjecture, Euclid on Primes, Euclid’s Fifth Postulate, Wilson’s Theorem along with Lagrange’s Proof of It and Pascal’s Triangle, and Rational Human Intelligence
19
作者 Leo Depuydt 《Advances in Pure Mathematics》 2014年第8期400-466,共67页
The main design of this paper is to determine once and for all the true nature and status of the sequence of the prime numbers, or primes—that is, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, and so on. The ma... The main design of this paper is to determine once and for all the true nature and status of the sequence of the prime numbers, or primes—that is, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, and so on. The main conclusion revolves entirely around two points. First, on the one hand, it is shown that the prime sequence exhibits an extremely high level of organization. But second, on the other hand, it is also shown that the clearly detectable organization of the primes is ultimately beyond human comprehension. This conclusion runs radically counter and opposite—in regard to both points—to what may well be the default view held widely, if not universally, in current theoretical mathematics about the prime sequence, namely the following. First, on the one hand, the prime sequence is deemed by all appearance to be entirely random, not organized at all. Second, on the other hand, all hope has not been abandoned that the sequence may perhaps at some point be grasped by human cognition, even if no progress at all has been made in this regard. Current mathematical research seems to be entirely predicated on keeping this hope alive. In the present paper, it is proposed that there is no reason to hope, as it were. According to this point of view, theoretical mathematics needs to take a drastic 180-degree turn. The manner of demonstration that will be used is direct and empirical. Two key observations are adduced showing, 1), how the prime sequence is highly organized and, 2), how this organization transcends human intelligence because it plays out in the dimension of infinity and in relation to π. The present paper is part of a larger project whose design it is to present a complete and final mathematical and physical theory of rational human intelligence. Nothing seems more self-evident than that rational human intelligence is subject to absolute limitations. The brain is a material and physically finite tool. Everyone will therefore readily agree that, as far as reasoning is concerned, there are things that 展开更多
关键词 Absolute Limitations of Rational Human Intelligence Analytic Number Theory Aristotle’s Fundamental Axiom of Thought Euclid’s Fifth Postulate Euclid on Numbers Euclid on Primes Euclid’s Proof of the Primes’ Infinitude Euler’s Infinite Prime Product Euler’s Infinite Prime Product Equation Euler’s Product Formula godel’s Incompleteness Theorem Goldbach’s Conjecture Lagrange’s Proof of Wilson’s Theorem Number Theory Partition Partition Numbers Prime Numbers (Primes) Prime Sequence (Sequence of the Prime Numbers) Rational Human Intelligence Rational Thought and Language Riemann’s Hypothesis Riemann’s Zeta Function Wilson’s Theorem
下载PDF
There Is No Standard Model of ZFC and ZFC_(2) with Henkin Semantics
20
作者 Jaykov Foukzon Elena Men’kova 《Advances in Pure Mathematics》 2019年第9期685-744,共60页
In this article we proved so-called strong reflection principles corresponding to formal theories Th which has omega-models or nonstandard model with standard part. A possible generalization of L&#246;b’s theorem... In this article we proved so-called strong reflection principles corresponding to formal theories Th which has omega-models or nonstandard model with standard part. A possible generalization of L&#246;b’s theorem is considered. Main results are: 1) , 2) , 3) , 4) , 5) let k be inaccessible cardinal then . 展开更多
关键词 godel Encoding Completion of ZFC Russell’s Paradox ω-Model Henkin Semantics Full Second-Order Semantic Strongly Inaccessible Cardinal
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部