摘要
利用Godel n值命题逻辑赋值域上概率的无穷乘积,在Godeln值命题逻辑系统中引入命题公式的随机真度和不可靠度概念。证明在Godeln值逻辑系统中,一个有效推理结论的不可靠度不超过各前提的不可靠度与其必要度的乘积之和。通过不可靠度在全体公式集上建立伪距离,给出基于伪距离和不可靠度的两种近似推理模式。
This paper introduces the concepts of random truth degrees and uncertainty degree of propositions in n-valued Godel logical system by using the infinite product of probability on the value domain. It is proved that the uncertainty degree of conclusion is less than or equal to the sum of the product of uncertainty degree of every premise and its essentialness degree in formal inference. By means of uncertainty degree the pseudo-metric on formulas set is established, and two diverse approximation reasoning models based on pseudo-metric and uncertainty degree respectively are given.
出处
《模糊系统与数学》
CSCD
北大核心
2012年第3期24-34,共11页
Fuzzy Systems and Mathematics
基金
湖南省重点建设学科项目
湖南省教育厅科学研究项目(10C1232)
湘南学院科研项目(08Y027)
关键词
GODEL
N值逻辑系统
随机真度
不可靠度
必要度
伪距离
近似推理
Godel n-value Logic
Random Truth Degree
Uncertainty Degree
Essentialness Degree
Pseudo-metric
Approximation Reasoning