We analyzed the genetic differences of 16 poplar clones between genomic-SSR and EST-SSR markers. The statistical results show that the average number of alleles detected by genomic-SSR was 4.1, Shannon's index 1.0646...We analyzed the genetic differences of 16 poplar clones between genomic-SSR and EST-SSR markers. The statistical results show that the average number of alleles detected by genomic-SSR was 4.1, Shannon's index 1.0646, observed heterozygos- ity 0.4427 and expected heterozygosity 0.5523, while for the EST-SSR, the average number of alleles was 2.8, Shannon's index 0.6985, observed heterozygosity 0.2330 and expected heterozygosity 0.4684. Cluster analysis indicated that the EST-SSR capacity of genotypic identification was more precise than that of genomic-SSR. These resuks reveal that EST-SSR and genomic-SSR have statistically significant genetic differences in polymorphism detection and genotypic identification. These differences could provide a theoretical basis for the rational use of SSR markers in species diversity and other related research.展开更多
基金support provided by the National Department Public Benefit Research Foundation(No.201004009)the National High Technology Research and Development Program of China(863Program,No.2009AA10Z107)
文摘We analyzed the genetic differences of 16 poplar clones between genomic-SSR and EST-SSR markers. The statistical results show that the average number of alleles detected by genomic-SSR was 4.1, Shannon's index 1.0646, observed heterozygos- ity 0.4427 and expected heterozygosity 0.5523, while for the EST-SSR, the average number of alleles was 2.8, Shannon's index 0.6985, observed heterozygosity 0.2330 and expected heterozygosity 0.4684. Cluster analysis indicated that the EST-SSR capacity of genotypic identification was more precise than that of genomic-SSR. These resuks reveal that EST-SSR and genomic-SSR have statistically significant genetic differences in polymorphism detection and genotypic identification. These differences could provide a theoretical basis for the rational use of SSR markers in species diversity and other related research.