Fused deposition modeling(FDM)has unique advantages in the rapid prototyping of thermoplastics which have been developed in diverse fields.However,although great efforts have been made to optimize FDM process,the mech...Fused deposition modeling(FDM)has unique advantages in the rapid prototyping of thermoplastics which have been developed in diverse fields.However,although great efforts have been made to optimize FDM process,the mechanical properties of printed parts are limited by the weak interlamination bonding as well as the poor performance of raw filaments used,such as acrylonitrile butadiene styrene(ABS),polylactic acid(PLA).Adding fibers into thermoplastic matrix and preparing high-performance filaments have been indicated to enhance the properties of fabricated parts.Recently,heat-resistant polyetheretherketone(PEEK)and its fiber reinforced composites were proposed for FDM process due to overcoming the limitation of equipment and process.However,few researches have been reported on the effects of FDM-3 D printing parameters on the mechanical properties of fiber reinforced PEEK composites.Therefore,5 wt%carbon fiber(CF)and glass fiber(GF)reinforced PEEK composite filaments were prepared respectively in this study.The effects of various printing parameters including nozzle temperature,platform temperature,printing speed and layer thickness on the mechanical properties(including tensile strength,flexural strength and impact strength)were surveyed.To analyze the microstructure and failure reasons of printed CF/PEEK and GF/PEEK samples,the tensile fractured surfaces were investigated via scanning electron microscope(SEM).展开更多
Material extrusion additive manufacturing has rapidly grown in use for tissue engineering research since its adoption in the year 2000. It has enabled researchers to produce scaffolds with intricate porous geometries ...Material extrusion additive manufacturing has rapidly grown in use for tissue engineering research since its adoption in the year 2000. It has enabled researchers to produce scaffolds with intricate porous geometries that were not feasible with traditional manufacturing processes. Researchers can control the structural geometry through a wide range of customisable printing parameters and design choices including material, print path, temperature, and many other process parameters. Currently, the impact of these choices is not fully understood. This review focuses on how the position and orientation of extruded filaments, which sometimes referred to as the print path, lay-down pattern, or simply'scaffold design', affect scaffold properties and biological performance. By analysing trends across multiple studies, new understanding was developed on how filament position affects mechanical properties. Biological performance was also found to be affected by filament position, but a lack of consensus between studies indicates a need for further research and understanding. In most research studies, scaffold design was dictated by capabilities of additive manufacturing software rather than free-form design of structural geometry optimised for biological requirements. There is scope for much greater application of engineering innovation to additive manufacture novel geometries. To achieve this, better understanding of biological requirements is needed to enable the effective specification of ideal scaffold geometries.展开更多
The influence of processing parameters on the precision of parts fabricated by fused deposition modeling (FDM) technology is studied based on a series of performed experiments. Processing parameters of FDM in terms ...The influence of processing parameters on the precision of parts fabricated by fused deposition modeling (FDM) technology is studied based on a series of performed experiments. Processing parameters of FDM in terms of wire-width compensation, extrusion velocity, filing velocity, and layer thickness are chosen as the control fac- tors. Robust design analysis and multi-index fuzzy comprehensive assessment method are used to obtain the opti- mal parameters. Results show that the influencing degrees of these four factors on the precision of as-processed parts are different. The optimizations of individual parameters and their combined effects are of the same impor- tance for a high precision manufacturing.展开更多
Based on analyzing the influences of a slicing scheme on stair-stepping effect, supporting structure, efficiency and deformation, etc. , analytical hierarchical process (AHP) combining with fuzzy synthetic evaluatio...Based on analyzing the influences of a slicing scheme on stair-stepping effect, supporting structure, efficiency and deformation, etc. , analytical hierarchical process (AHP) combining with fuzzy synthetic evaluation is introduced to make decision in slicing schemes for a processing part. The application in determining the slicing scheme for a computer mouse during prototyping shows that the method increases the rationality during decision- making and improves quality and efficiency for the prototyping part.展开更多
基金supported by Shandong Science Fund for Distinguished Young Scholars of China(JQ201715)National Natural Science Foundation of China(No.51575322)+1 种基金Major Program of Shandong Province Natural Science Foundation of China(ZR2018ZA0401 and ZR2018ZB0521)Key Research and Development Program of Shandong Province of China(2019GGX104049)。
文摘Fused deposition modeling(FDM)has unique advantages in the rapid prototyping of thermoplastics which have been developed in diverse fields.However,although great efforts have been made to optimize FDM process,the mechanical properties of printed parts are limited by the weak interlamination bonding as well as the poor performance of raw filaments used,such as acrylonitrile butadiene styrene(ABS),polylactic acid(PLA).Adding fibers into thermoplastic matrix and preparing high-performance filaments have been indicated to enhance the properties of fabricated parts.Recently,heat-resistant polyetheretherketone(PEEK)and its fiber reinforced composites were proposed for FDM process due to overcoming the limitation of equipment and process.However,few researches have been reported on the effects of FDM-3 D printing parameters on the mechanical properties of fiber reinforced PEEK composites.Therefore,5 wt%carbon fiber(CF)and glass fiber(GF)reinforced PEEK composite filaments were prepared respectively in this study.The effects of various printing parameters including nozzle temperature,platform temperature,printing speed and layer thickness on the mechanical properties(including tensile strength,flexural strength and impact strength)were surveyed.To analyze the microstructure and failure reasons of printed CF/PEEK and GF/PEEK samples,the tensile fractured surfaces were investigated via scanning electron microscope(SEM).
文摘Material extrusion additive manufacturing has rapidly grown in use for tissue engineering research since its adoption in the year 2000. It has enabled researchers to produce scaffolds with intricate porous geometries that were not feasible with traditional manufacturing processes. Researchers can control the structural geometry through a wide range of customisable printing parameters and design choices including material, print path, temperature, and many other process parameters. Currently, the impact of these choices is not fully understood. This review focuses on how the position and orientation of extruded filaments, which sometimes referred to as the print path, lay-down pattern, or simply'scaffold design', affect scaffold properties and biological performance. By analysing trends across multiple studies, new understanding was developed on how filament position affects mechanical properties. Biological performance was also found to be affected by filament position, but a lack of consensus between studies indicates a need for further research and understanding. In most research studies, scaffold design was dictated by capabilities of additive manufacturing software rather than free-form design of structural geometry optimised for biological requirements. There is scope for much greater application of engineering innovation to additive manufacture novel geometries. To achieve this, better understanding of biological requirements is needed to enable the effective specification of ideal scaffold geometries.
基金Supported by the Science and Technology Support Key Project of 12th Five-Year of China(2011BAD20B00-4)~~
文摘The influence of processing parameters on the precision of parts fabricated by fused deposition modeling (FDM) technology is studied based on a series of performed experiments. Processing parameters of FDM in terms of wire-width compensation, extrusion velocity, filing velocity, and layer thickness are chosen as the control fac- tors. Robust design analysis and multi-index fuzzy comprehensive assessment method are used to obtain the opti- mal parameters. Results show that the influencing degrees of these four factors on the precision of as-processed parts are different. The optimizations of individual parameters and their combined effects are of the same impor- tance for a high precision manufacturing.
基金Supported by the Science and Technology Support Key Project of Jiangsu Province (DE2008365)~~
文摘Based on analyzing the influences of a slicing scheme on stair-stepping effect, supporting structure, efficiency and deformation, etc. , analytical hierarchical process (AHP) combining with fuzzy synthetic evaluation is introduced to make decision in slicing schemes for a processing part. The application in determining the slicing scheme for a computer mouse during prototyping shows that the method increases the rationality during decision- making and improves quality and efficiency for the prototyping part.