An important question that arises is which surfaces in three-space admit a mean curvature preserving isometry which is not an isometry of the whole space. This leads to a class of surface known as a Bonnet surface in ...An important question that arises is which surfaces in three-space admit a mean curvature preserving isometry which is not an isometry of the whole space. This leads to a class of surface known as a Bonnet surface in which the number of noncongruent immersions is two or infinity. The intention here is to present a proof of a theorem using an approach which is based on differential forms and moving frames and states that helicoidal surfaces necessarily fall into the class of Bonnet surfaces. Some other results are developed in the same manner.展开更多
Let Mn(n≥2) be an immersed umbilic-free hypersurface in the(n+1)-dimensional unit sphere Sn+1. Then Mn is associated witha so-called M(o)bius metric g, and a M(o)bius second fundamental form Bwhich are invariants of ...Let Mn(n≥2) be an immersed umbilic-free hypersurface in the(n+1)-dimensional unit sphere Sn+1. Then Mn is associated witha so-called M(o)bius metric g, and a M(o)bius second fundamental form Bwhich are invariants of Mn under the M(o)bius transformation groupof Sn+1.In this paper, we classify all umbilic-free hypersurfaces withparallel M(o)bius second fundamental form.展开更多
Given an immersed submanifold x : M^M → S^n in the unit sphere S^n without umbilics, a Blaschke eigenvalue of x is by definition an eigenvalue of the Blaschke tensor of x. x is called Blaschke isoparametric if its M...Given an immersed submanifold x : M^M → S^n in the unit sphere S^n without umbilics, a Blaschke eigenvalue of x is by definition an eigenvalue of the Blaschke tensor of x. x is called Blaschke isoparametric if its Mobius form vanishes identically and all of its Blaschke eigenvalues are constant. Then the classification of Blaschke isoparametric hypersurfaces is natural and interesting in the MSbius geometry of submanifolds. When n = 4, the corresponding classification theorem was given by the authors. In this paper, we are able to complete the corresponding classification for n = 5. In particular, we shall prove that all the Blaschke isoparametric hypersurfaces in S^5 with more than two distinct Blaschke eigenvalues are necessarily Mobius isoparametric.展开更多
For an immersed submanifold x : M^m→ Sn in the unit sphere S^n without umbilics, an eigenvalue of the Blaschke tensor of x is called a Blaschke eigenvalue of x. It is interesting to determine all hypersurfaces in Sn...For an immersed submanifold x : M^m→ Sn in the unit sphere S^n without umbilics, an eigenvalue of the Blaschke tensor of x is called a Blaschke eigenvalue of x. It is interesting to determine all hypersurfaces in Sn with constant Blaschke eigenvalues. In this paper, we are able to classify all immersed hypersurfaces in S^m+1 with vanishing MSbius form and constant Blaschke eigenvalues, in case (1) x has exact two distinct Blaschke eigenvalues, or (2) m = 3. With these classifications, some interesting examples are also presented.展开更多
Let M n be a complete space-like submanifold with parallel mean curvature vector in an indefinite space form N n+p p (c).A sharp estimate for the upper bound of the norm of the second fundamental form ...Let M n be a complete space-like submanifold with parallel mean curvature vector in an indefinite space form N n+p p (c).A sharp estimate for the upper bound of the norm of the second fundamental form of M n is obtained. A generalization of this result to complete space-like hypersurfaces with constant mean curvature in a Lorentz manifold is given. Moreover, harmonic Gauss maps of M n in N n+p p(c) in a generalized sense are considered.展开更多
In this paper, we obtain a formula for submanifolds in Sn+p by calculating the Laplacian of the Moebius second fundamental form. Using this formula, we obtain some pinching theorems about the minimal eigenvalue of the...In this paper, we obtain a formula for submanifolds in Sn+p by calculating the Laplacian of the Moebius second fundamental form. Using this formula, we obtain some pinching theorems about the minimal eigenvalue of the Blaschke tensor.展开更多
文摘An important question that arises is which surfaces in three-space admit a mean curvature preserving isometry which is not an isometry of the whole space. This leads to a class of surface known as a Bonnet surface in which the number of noncongruent immersions is two or infinity. The intention here is to present a proof of a theorem using an approach which is based on differential forms and moving frames and states that helicoidal surfaces necessarily fall into the class of Bonnet surfaces. Some other results are developed in the same manner.
基金The First author is partially supported by grants of CSC,the National Natural Science Foundation of ChinaOutstanding Youth Foundation of Henan,Chinathe second author is partially Supported by the Alexander von Humboldt Stiftung,grant of Tsinghua University and Zhongdian grant of NSFC.
文摘Let Mn(n≥2) be an immersed umbilic-free hypersurface in the(n+1)-dimensional unit sphere Sn+1. Then Mn is associated witha so-called M(o)bius metric g, and a M(o)bius second fundamental form Bwhich are invariants of Mn under the M(o)bius transformation groupof Sn+1.In this paper, we classify all umbilic-free hypersurfaces withparallel M(o)bius second fundamental form.
文摘Given an immersed submanifold x : M^M → S^n in the unit sphere S^n without umbilics, a Blaschke eigenvalue of x is by definition an eigenvalue of the Blaschke tensor of x. x is called Blaschke isoparametric if its Mobius form vanishes identically and all of its Blaschke eigenvalues are constant. Then the classification of Blaschke isoparametric hypersurfaces is natural and interesting in the MSbius geometry of submanifolds. When n = 4, the corresponding classification theorem was given by the authors. In this paper, we are able to complete the corresponding classification for n = 5. In particular, we shall prove that all the Blaschke isoparametric hypersurfaces in S^5 with more than two distinct Blaschke eigenvalues are necessarily Mobius isoparametric.
文摘For an immersed submanifold x : M^m→ Sn in the unit sphere S^n without umbilics, an eigenvalue of the Blaschke tensor of x is called a Blaschke eigenvalue of x. It is interesting to determine all hypersurfaces in Sn with constant Blaschke eigenvalues. In this paper, we are able to classify all immersed hypersurfaces in S^m+1 with vanishing MSbius form and constant Blaschke eigenvalues, in case (1) x has exact two distinct Blaschke eigenvalues, or (2) m = 3. With these classifications, some interesting examples are also presented.
文摘Let M n be a complete space-like submanifold with parallel mean curvature vector in an indefinite space form N n+p p (c).A sharp estimate for the upper bound of the norm of the second fundamental form of M n is obtained. A generalization of this result to complete space-like hypersurfaces with constant mean curvature in a Lorentz manifold is given. Moreover, harmonic Gauss maps of M n in N n+p p(c) in a generalized sense are considered.
文摘In this paper, we obtain a formula for submanifolds in Sn+p by calculating the Laplacian of the Moebius second fundamental form. Using this formula, we obtain some pinching theorems about the minimal eigenvalue of the Blaschke tensor.