Enhanced damage to the full-filled fuel tank,impacted by the cold pressed and sintered PTFE/Al/W reactive material projectile(RMP)with a density of 7.8 g/cm3,is investigated experimentally and theoretically.The fuel t...Enhanced damage to the full-filled fuel tank,impacted by the cold pressed and sintered PTFE/Al/W reactive material projectile(RMP)with a density of 7.8 g/cm3,is investigated experimentally and theoretically.The fuel tank is a rectangular structure,welded by six pieces of 2024 aluminum plate with a thickness of 6 mm,and filled with RP-3 aviation kerosene.Experimental results show that the kerosene is ignited by the RMP impact at a velocity above 1062 m/s,and a novel interior ignition phenomenon which is closely related to the rupture effect of the fuel tank is observed.However,the traditional steel projectile with the same mass and dimension requires a velocity up to 1649 m/s to ignite the kerosene.Based on the experimental results,the radial pressure field is considered to be the main reason for the shear failure of weld.For mechanism considerations,the chemical energy released by the RMP enhances the hydrodynamic ram(HRAM)effect and provides additional ignition sources inside the fuel tank,thereby enhancing both rupture and ignition effects.Moreover,to further understand the enhanced ignition effect of RMP,the reactive debris temperature inside the kerosene is analyzed theoretically.The initiated reactive debris with high temperature provides effective interior ignition sources to ignite the kerosene,resulting in the enhanced ignition of the kerosene.展开更多
压水堆核电厂运行过程中可能发生燃料棒破损。燃料棒一旦破损,所包容的高水平放射性碘等裂变气体将释放至一回路,并可能进一步释放到厂房导致较高的空气污染,增加工作人员受到内照射的风险。对VVER机组燃料棒破损可能导致的碘危害进行...压水堆核电厂运行过程中可能发生燃料棒破损。燃料棒一旦破损,所包容的高水平放射性碘等裂变气体将释放至一回路,并可能进一步释放到厂房导致较高的空气污染,增加工作人员受到内照射的风险。对VVER机组燃料棒破损可能导致的碘危害进行了估算和分析,结果表明:即使1根燃料棒破损也可导致大修期间堆厂房放射性碘空气污染水平高达84DAC(derived air concentration)。结合电厂实践从一回路净化除碘、控制碘向厂房空气释放和扩散、空气净化和个人防护等方面探讨了放射性碘危害的控制和防护措施,并提出了后续应对类似情况的建议。展开更多
文摘Enhanced damage to the full-filled fuel tank,impacted by the cold pressed and sintered PTFE/Al/W reactive material projectile(RMP)with a density of 7.8 g/cm3,is investigated experimentally and theoretically.The fuel tank is a rectangular structure,welded by six pieces of 2024 aluminum plate with a thickness of 6 mm,and filled with RP-3 aviation kerosene.Experimental results show that the kerosene is ignited by the RMP impact at a velocity above 1062 m/s,and a novel interior ignition phenomenon which is closely related to the rupture effect of the fuel tank is observed.However,the traditional steel projectile with the same mass and dimension requires a velocity up to 1649 m/s to ignite the kerosene.Based on the experimental results,the radial pressure field is considered to be the main reason for the shear failure of weld.For mechanism considerations,the chemical energy released by the RMP enhances the hydrodynamic ram(HRAM)effect and provides additional ignition sources inside the fuel tank,thereby enhancing both rupture and ignition effects.Moreover,to further understand the enhanced ignition effect of RMP,the reactive debris temperature inside the kerosene is analyzed theoretically.The initiated reactive debris with high temperature provides effective interior ignition sources to ignite the kerosene,resulting in the enhanced ignition of the kerosene.
文摘压水堆核电厂运行过程中可能发生燃料棒破损。燃料棒一旦破损,所包容的高水平放射性碘等裂变气体将释放至一回路,并可能进一步释放到厂房导致较高的空气污染,增加工作人员受到内照射的风险。对VVER机组燃料棒破损可能导致的碘危害进行了估算和分析,结果表明:即使1根燃料棒破损也可导致大修期间堆厂房放射性碘空气污染水平高达84DAC(derived air concentration)。结合电厂实践从一回路净化除碘、控制碘向厂房空气释放和扩散、空气净化和个人防护等方面探讨了放射性碘危害的控制和防护措施,并提出了后续应对类似情况的建议。