Because the result of the MB fractal model contradicts with the classical contact mechanics, a revised elastoplastic contact model of a single asperity is developed based on fractal theory. The critical areas of a sin...Because the result of the MB fractal model contradicts with the classical contact mechanics, a revised elastoplastic contact model of a single asperity is developed based on fractal theory. The critical areas of a single asperity are scale dependent, with an increase in the contact load and contact area, a transition from elastic, elastoplastic to full plastic deformation takes place in this order. In considering the size distribution function, analytic expression between the total contact load and the real contact area on the contact surface is obtained. The elastic, elastoplastic and full plastic contact load are obtained by the critical elastic contact area of the biggest asperity and maximun contact area of a single asperity. The results show that a rough surface is firstly in elastic deformation. As the load increases, elastoplastic or full plastic deformation takes place. For constant characteristic length scale G, the slope of load-area relation is proportional to fractal dimension D. For constant fractal dimension D, the slope of load-area relation is inversely proportional to G. For constant D and G, the slope of load-area relation is inversely proportional to property of the material ~b, namely with the same load, the material of rough surface is softer, and the total contact area is larger. The contact mechanics model provides a foundation for study of the friction, wear and seal performance of rough surfaces.展开更多
The contact sti ness of a mechanical bonding surface is an important parameter in determining the normal and radial contact force. To improve the calculation accuracy of the contact force model, the surface roughness ...The contact sti ness of a mechanical bonding surface is an important parameter in determining the normal and radial contact force. To improve the calculation accuracy of the contact force model, the surface roughness of the bonding surface and the energy loss that necessarily occurs during the impact process should be considered com?prehensively. To study the normal contact force of a revolute joint with clearance more accurately in the case of dry friction, a nonlinear sti ness coe cient model considering the surface roughness was established based on fractal theory, which considers the elastic, elastic?plastic, and plastic deformations of the asperities of the contact surface during the contact process. On this basis, a modified nonlinear spring damping model was established based on the Lankarani–Nikravesh contact force model. The laws influencing the surface roughness, recovery coe cient, initial velocity, and clearance size on the impact force were revealed, and were compared with the Lankarani–Nikravesh model and a hybrid model using MATLAB. The maximum impact force was obtained using a modified contact force model under di erent initial velocities, di erent clearances, and di erent degrees of surface roughness, and the calculated results were then compared with the experiment results. This study indicates that the modified model can be used more widely than other models, and is suitable for both large and small clearances. In particular, the modified model is more accurate when calculating the contact force of a revolute joint with a small clearance.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.51105304,51475364)Shaanxi Provincial Natural Science Basic Research Plan of China(Grant No.2015JM5212)
文摘Because the result of the MB fractal model contradicts with the classical contact mechanics, a revised elastoplastic contact model of a single asperity is developed based on fractal theory. The critical areas of a single asperity are scale dependent, with an increase in the contact load and contact area, a transition from elastic, elastoplastic to full plastic deformation takes place in this order. In considering the size distribution function, analytic expression between the total contact load and the real contact area on the contact surface is obtained. The elastic, elastoplastic and full plastic contact load are obtained by the critical elastic contact area of the biggest asperity and maximun contact area of a single asperity. The results show that a rough surface is firstly in elastic deformation. As the load increases, elastoplastic or full plastic deformation takes place. For constant characteristic length scale G, the slope of load-area relation is proportional to fractal dimension D. For constant fractal dimension D, the slope of load-area relation is inversely proportional to G. For constant D and G, the slope of load-area relation is inversely proportional to property of the material ~b, namely with the same load, the material of rough surface is softer, and the total contact area is larger. The contact mechanics model provides a foundation for study of the friction, wear and seal performance of rough surfaces.
基金Supported by National Natural Science Foundation of China(Grant No.51775475)Hebei Provincial Natural Science Foundation of China(Grant No.E2016203463)
文摘The contact sti ness of a mechanical bonding surface is an important parameter in determining the normal and radial contact force. To improve the calculation accuracy of the contact force model, the surface roughness of the bonding surface and the energy loss that necessarily occurs during the impact process should be considered com?prehensively. To study the normal contact force of a revolute joint with clearance more accurately in the case of dry friction, a nonlinear sti ness coe cient model considering the surface roughness was established based on fractal theory, which considers the elastic, elastic?plastic, and plastic deformations of the asperities of the contact surface during the contact process. On this basis, a modified nonlinear spring damping model was established based on the Lankarani–Nikravesh contact force model. The laws influencing the surface roughness, recovery coe cient, initial velocity, and clearance size on the impact force were revealed, and were compared with the Lankarani–Nikravesh model and a hybrid model using MATLAB. The maximum impact force was obtained using a modified contact force model under di erent initial velocities, di erent clearances, and di erent degrees of surface roughness, and the calculated results were then compared with the experiment results. This study indicates that the modified model can be used more widely than other models, and is suitable for both large and small clearances. In particular, the modified model is more accurate when calculating the contact force of a revolute joint with a small clearance.