To study the effect on regulation of cell cycle of osteosarcoma cell line MG63 tranceduced with exogenous p16ink4a and hRbl genes, pIRES-p16ink4a-hRb1, pIRES-p16ink4a and pIREShRbl plasmids were constructed by gene re...To study the effect on regulation of cell cycle of osteosarcoma cell line MG63 tranceduced with exogenous p16ink4a and hRbl genes, pIRES-p16ink4a-hRb1, pIRES-p16ink4a and pIREShRbl plasmids were constructed by gene recombination technology. The recombinant plasmid was transferred into osteosarcoma cell line MG63 by metafectene, and the resistant clones were selected by G418 selective medium, mRNA and protein expression of osteosarcoma cell line were assayed by RT-PCR and Western-Blot respectively. Cell cycle and apoptosis were analyzed by subG1 flow cytometric. Cell proliferation was tested by MTT. In the genome of these transfected target cells, the expression of p16ink4a and hRb1 mRNA and protein were detected respectively in vitro. It was demonstrated with subG1 flow cytometric analysis and MTT method that p16ink4a and hRbl genes cooperation more significantly inhibited cell growth and induced a more marked G1 arrest and apoptosis than p16ink4a/hRb1 alone (P〈0.01). Coexpression of exogenous p16ink4a with hRbl broke the regulatory feedback loop of p16ink4a-cyclinD1/CDK-hRbl and played a more significant role in inhibiting cell growth as well as inducing cell apoptosis than p16ink4a or hRbl did alone in vitro.展开更多
The reproductive cell of dipolidy and triploidy Pacific oyster, Crassostrea gigas were analyzed. The results shov that small part of male triploidy oyster can produce living sperms and there sperm can make the normal ...The reproductive cell of dipolidy and triploidy Pacific oyster, Crassostrea gigas were analyzed. The results shov that small part of male triploidy oyster can produce living sperms and there sperm can make the normal dipolidy eggs fertilize and yield aneuploidy embryo, but large part of them can only produce immature sperm cell. The test also find that the mature time of male tripolidy gonad occurs later than normal dipolidy, and their synchronization is not as good as diploidy.展开更多
文摘To study the effect on regulation of cell cycle of osteosarcoma cell line MG63 tranceduced with exogenous p16ink4a and hRbl genes, pIRES-p16ink4a-hRb1, pIRES-p16ink4a and pIREShRbl plasmids were constructed by gene recombination technology. The recombinant plasmid was transferred into osteosarcoma cell line MG63 by metafectene, and the resistant clones were selected by G418 selective medium, mRNA and protein expression of osteosarcoma cell line were assayed by RT-PCR and Western-Blot respectively. Cell cycle and apoptosis were analyzed by subG1 flow cytometric. Cell proliferation was tested by MTT. In the genome of these transfected target cells, the expression of p16ink4a and hRb1 mRNA and protein were detected respectively in vitro. It was demonstrated with subG1 flow cytometric analysis and MTT method that p16ink4a and hRbl genes cooperation more significantly inhibited cell growth and induced a more marked G1 arrest and apoptosis than p16ink4a/hRb1 alone (P〈0.01). Coexpression of exogenous p16ink4a with hRbl broke the regulatory feedback loop of p16ink4a-cyclinD1/CDK-hRbl and played a more significant role in inhibiting cell growth as well as inducing cell apoptosis than p16ink4a or hRbl did alone in vitro.
文摘The reproductive cell of dipolidy and triploidy Pacific oyster, Crassostrea gigas were analyzed. The results shov that small part of male triploidy oyster can produce living sperms and there sperm can make the normal dipolidy eggs fertilize and yield aneuploidy embryo, but large part of them can only produce immature sperm cell. The test also find that the mature time of male tripolidy gonad occurs later than normal dipolidy, and their synchronization is not as good as diploidy.