Multi-model approach can significantly improve the prediction performance of soft sensors in the process with multiple operational conditions.However,traditional clustering algorithms may result in overlapping phenome...Multi-model approach can significantly improve the prediction performance of soft sensors in the process with multiple operational conditions.However,traditional clustering algorithms may result in overlapping phenomenon in subclasses,so that edge classes and outliers cannot be effectively dealt with and the modeling result is not satisfactory.In order to solve these problems,a new feature extraction method based on weighted kernel Fisher criterion is presented to improve the clustering accuracy,in which feature mapping is adopted to bring the edge classes and outliers closer to other normal subclasses.Furthermore,the classified data are used to develop a multiple model based on support vector machine.The proposed method is applied to a bisphenol A production process for prediction of the quality index.The simulation results demonstrate its ability in improving the data classification and the prediction performance of the soft sensor.展开更多
Recently,sparse representation classification(SRC)and fisher discrimination dictionary learning(FDDL)methods have emerged as important methods for vehicle classification.In this paper,inspired by recent breakthroughs ...Recently,sparse representation classification(SRC)and fisher discrimination dictionary learning(FDDL)methods have emerged as important methods for vehicle classification.In this paper,inspired by recent breakthroughs of discrimination dictionary learning approach and multi-task joint covariate selection,we focus on the problem of vehicle classification in real-world applications by formulating it as a multi-task joint sparse representation model based on fisher discrimination dictionary learning to merge the strength of multiple features among multiple sensors.To improve the classification accuracy in complex scenes,we develop a new method,called multi-task joint sparse representation classification based on fisher discrimination dictionary learning,for vehicle classification.In our proposed method,the acoustic and seismic sensor data sets are captured to measure the same physical event simultaneously by multiple heterogeneous sensors and the multi-dimensional frequency spectrum features of sensors data are extracted using Mel frequency cepstral coefficients(MFCC).Moreover,we extend our model to handle sparse environmental noise.We experimentally demonstrate the benefits of joint information fusion based on fisher discrimination dictionary learning from different sensors in vehicle classification tasks.展开更多
针对模拟电路故障信号的非线性和非平稳性,提出了用局域均值分解(Local mean decomposition,LMD)和近似熵算法对模拟电路进行特征提取的方法。利用LMD算法把电路故障信号分解为一系列乘积函数(Product functions,PF),再选取前3个PF分量...针对模拟电路故障信号的非线性和非平稳性,提出了用局域均值分解(Local mean decomposition,LMD)和近似熵算法对模拟电路进行特征提取的方法。利用LMD算法把电路故障信号分解为一系列乘积函数(Product functions,PF),再选取前3个PF分量,求它们的近似熵,作为故障的特征向量。电路发生不同故障时,其输出响应信号的复杂度不同,经LMD分解后的PF分量的复杂度就更不相同,而近似熵可以表征时间序列的复杂度,故用LMD加近似熵可以有效提取故障电路的信息。在对故障进行分类判别时,使用核Fisher判别分析,得出各故障的诊断精度。仿真结果显示,本文的特征提取方法在改善故障电路特征的同时提高了诊断准确度,平均分类精度为97.86%。展开更多
基金Supported by the National Natural Science Foundation of China(61273070)the Foundation of Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Multi-model approach can significantly improve the prediction performance of soft sensors in the process with multiple operational conditions.However,traditional clustering algorithms may result in overlapping phenomenon in subclasses,so that edge classes and outliers cannot be effectively dealt with and the modeling result is not satisfactory.In order to solve these problems,a new feature extraction method based on weighted kernel Fisher criterion is presented to improve the clustering accuracy,in which feature mapping is adopted to bring the edge classes and outliers closer to other normal subclasses.Furthermore,the classified data are used to develop a multiple model based on support vector machine.The proposed method is applied to a bisphenol A production process for prediction of the quality index.The simulation results demonstrate its ability in improving the data classification and the prediction performance of the soft sensor.
基金This work was supported by National Natural Science Foundation of China(NSFC)under Grant No.61771299,No.61771322,No.61375015,No.61301027.
文摘Recently,sparse representation classification(SRC)and fisher discrimination dictionary learning(FDDL)methods have emerged as important methods for vehicle classification.In this paper,inspired by recent breakthroughs of discrimination dictionary learning approach and multi-task joint covariate selection,we focus on the problem of vehicle classification in real-world applications by formulating it as a multi-task joint sparse representation model based on fisher discrimination dictionary learning to merge the strength of multiple features among multiple sensors.To improve the classification accuracy in complex scenes,we develop a new method,called multi-task joint sparse representation classification based on fisher discrimination dictionary learning,for vehicle classification.In our proposed method,the acoustic and seismic sensor data sets are captured to measure the same physical event simultaneously by multiple heterogeneous sensors and the multi-dimensional frequency spectrum features of sensors data are extracted using Mel frequency cepstral coefficients(MFCC).Moreover,we extend our model to handle sparse environmental noise.We experimentally demonstrate the benefits of joint information fusion based on fisher discrimination dictionary learning from different sensors in vehicle classification tasks.
文摘针对模拟电路故障信号的非线性和非平稳性,提出了用局域均值分解(Local mean decomposition,LMD)和近似熵算法对模拟电路进行特征提取的方法。利用LMD算法把电路故障信号分解为一系列乘积函数(Product functions,PF),再选取前3个PF分量,求它们的近似熵,作为故障的特征向量。电路发生不同故障时,其输出响应信号的复杂度不同,经LMD分解后的PF分量的复杂度就更不相同,而近似熵可以表征时间序列的复杂度,故用LMD加近似熵可以有效提取故障电路的信息。在对故障进行分类判别时,使用核Fisher判别分析,得出各故障的诊断精度。仿真结果显示,本文的特征提取方法在改善故障电路特征的同时提高了诊断准确度,平均分类精度为97.86%。