期刊文献+

一种动态特征选取方法及其在故障诊断中的应用 被引量:3

A Dynamic Feature Selection Approach and Its Application in Fault Diagnosis
下载PDF
导出
摘要 针对高铁故障数据的特点,以高速列车走行部(主要指转向架)常见故障的实测数据为研究对象,提出一种动态特征选取方法。通过结合Fisher比率和模糊熵方法对其特征空间进行评估,有效去除冗余特征,利用加权平均方法选取优化的特征子集,从而实现故障分类。实验结果表明,与Fisher比率方法、模糊熵方法相比,该方法能提高不同列车速度下高铁故障的分类准确度及低速时的分类稳定性;与原特征空间方法相比,使用该方法提取最优特征空间后各列车速度下的分类准确率平均提高了5.2%。 According to the characteristic of fault data of high-speed train, a dynamic feature selecting algorithm is proposed to research the measured data of the running gear( referring mainly to bogie) of high-speed train. The approach combines the advantages of Fisher ratio and fuzzy entropy dynamically, which manages to evaluate features more accurately and removes the redundant features effectively to obtain superior feature subset by weighted average method. The new approach can improve classification accuracy. Experimental results for fault data of high-speed train show that the proposed approach not only improves the classification accuracies significantly,but also strengthens the stability in low speed. The overall-precise improvement is 5. 2% after extracting the optimal feature space in average compared with that of the original feature space.
出处 《计算机工程》 CAS CSCD 2014年第11期139-142,148,共5页 Computer Engineering
基金 国家自然科学基金资助重点项目(61134002)
关键词 特征选取 模糊熵 Fisher比率 故障分类 相似性分类器 鲁棒性 feature selection fuzzy entropy Fisher ratio fault classification similarity classifier robustness
  • 相关文献

参考文献13

  • 1Liu Huan,Yu Lei.Toward Integrating Feature Selection Algorithms for Classification and Clustering [J].IEEE Transactions on Knowledge and Data Engineering,2005,17(3):491-502. 被引量:1
  • 2Guyon I,Elissee A.An Introduction to Variable and Feature Selection [J].Journal of Machine Learning Research,2003,3(3):1157-1182. 被引量:1
  • 3杨艺,韩德强,韩崇昭.基于排序融合的特征选择[J].控制与决策,2011,26(3):397-401. 被引量:13
  • 4Feng Yang,Mao K Z.Robust Feature Selection for Microarray Data Based on Multicriterion Fusion[J].ACM Transactions on Computational Biology and Bioinformatics,2011,8(4):1080-1092. 被引量:1
  • 5李勇明,张素娟,曾孝平,覃剑,韩亮.轮询式多准则特征选择算法的研究[J].系统仿真学报,2009,21(7):2010-2013. 被引量:7
  • 6Yan Weizhong.Fusion in Multi-criterion Feature Ranking [C]// Proceedings of the 10th International Conference on Information Fusion.Quebec,Canada:[s.n.],2007:1-6. 被引量:1
  • 7Luukka P.Feature Selection Using Fuzzy Entropy Measures with Similarity Classifier [J].Expert Systems with Application,2011,38(4):4600-4607. 被引量:1
  • 8Zabidi A,Mansor W.The Effect of F-ratio in the Classification of Asphyxiated Infant Cries Using Multilayer Perception Neural Network [C]// Proceedings of EMBS Conference on Biomedical Engineering & Science.Kuala Lumpur,Malaysia:IEEE Press,2010:126-129. 被引量:1
  • 9Saha G,Senapati S,Chakroborty S.An F-ratio Based Optimization on Noisy Data for Speaker Recognition Application[C]// Proceedings of INDICON’05.[S.l.]: IEEE Press,2005:352-355. 被引量:1
  • 10Abdulla W H,Kasbov N.Reduced Feature-set Based Parallel CHMM Speech Recognition Systems [J].Information Sciences,2003,156(1/2):21-38. 被引量:1

二级参考文献54

共引文献111

同被引文献25

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部