Coatings containing Fe-Si or Si particles were electrodeposited on 3.0%(mass fraction) Si steel sheets. The surface morphology, the cross-section and the silicon content of coating have been investigated, respective...Coatings containing Fe-Si or Si particles were electrodeposited on 3.0%(mass fraction) Si steel sheets. The surface morphology, the cross-section and the silicon content of coating have been investigated, respectively. It was found that the number of particles on the coating surface and cross-section significantly decreased with increasing silicon content in the applied particles, leading to a decrease of the silicon content of coatings. About 10.2% silicon content of coatings deposited with Fe-30%Si particles can be obtained, whereas that for Si particles was only 2.9% at a particle concentration of 100 g/L and current density of 2 A/dm2. This is mainly attributed to the conductivity of applied particles. High conductivity can promote the co-deposition of the particles. With increasing silicon content in the particles, their conductivity decreased sharply, resulting in the decrease of silicon content of coatings. Present work may initiate a new method to modify the particle content of the composite coatings via changing the conductivity of the particles during the composite electrodeposition. In this paper, a possible mechanism was proposed to explain the phenomena.展开更多
基金Supported by the National Natural Science Foundation of China(No.51034010) and the Project of the Science and Technology Commission of Shanghai Municipality, China(No. 13JC1402500).
文摘Coatings containing Fe-Si or Si particles were electrodeposited on 3.0%(mass fraction) Si steel sheets. The surface morphology, the cross-section and the silicon content of coating have been investigated, respectively. It was found that the number of particles on the coating surface and cross-section significantly decreased with increasing silicon content in the applied particles, leading to a decrease of the silicon content of coatings. About 10.2% silicon content of coatings deposited with Fe-30%Si particles can be obtained, whereas that for Si particles was only 2.9% at a particle concentration of 100 g/L and current density of 2 A/dm2. This is mainly attributed to the conductivity of applied particles. High conductivity can promote the co-deposition of the particles. With increasing silicon content in the particles, their conductivity decreased sharply, resulting in the decrease of silicon content of coatings. Present work may initiate a new method to modify the particle content of the composite coatings via changing the conductivity of the particles during the composite electrodeposition. In this paper, a possible mechanism was proposed to explain the phenomena.