The excellent corrosion resistance,formability and strength make stainless steels versatile for diverse applications.However,its high specific strength and good crashworthiness make it suitable for transportation and ...The excellent corrosion resistance,formability and strength make stainless steels versatile for diverse applications.However,its high specific strength and good crashworthiness make it suitable for transportation and aerospace industry.On the other hand,the need to reduce the weight of vehicle and aerospace components has created renewed interest in the use of magnesium alloys.Due to their differences in physical and metallurgical properties,bonding of the 316L steel and AZ31 magnesium alloy using conventional fusion welding methods encountered many limitations.Therefore,the use of liquid phase forming interlayers is required to overcome the differences in their properties,eliminates the need for a high bonding pressure to achieve intimate contact between the bonded surfaces.Both Cu and Ni interlayers successively formed a eutectic phase with magnesium.The formation of intermetallics and Mg diffusion caused the eutectic phase to isothermally solidify with increasing bonding time.The formation of ternary intermetallic phases(λ1 and B2) impaired the bond shear strength particularly at the end of the isothermal solidification stage where no eutectic phase was observed.However,the joints showed a higher shear strength value of 57 MPa when bonding with Cu interlayer at 530℃ for 30 min compared to 32 MPa when Ni interlayer was used at 510℃ for 20 min.展开更多
The exploitation of new green polymerization avenues for the effective synthesis of polymers by reversible-deactivation radical polymerization plays a critical role in pursuing the development of polymeric materials.I...The exploitation of new green polymerization avenues for the effective synthesis of polymers by reversible-deactivation radical polymerization plays a critical role in pursuing the development of polymeric materials.In this work,serials of deep eutectic solvents(DES)with intermolecular-hydrogen-bonding interaction were constructed as catalysts and medium for actuating reversible complexation-mediated polymerization(RCMP)for the first time,yielding methacrylate polymers with high monomer conversion and narrow dispersion molecular weight in both water and oil systems.The mechanism and elementary reaction of RCMP were explored deeply,revealing that the complexation of initiator with DES to generate radicals was a ratecontrolling step and intermolecular-hydrogen-bond was primary factor to influence polymerization rate.Moreover,the insights of density functional theory calculations revealed that negative electrostatic potential ensured nucleophilic capacity.This investigation demonstrated the considerable potential of DES for RCMP,which is anticipated for other polymerization applications as a novel medium mode.展开更多
Developing a new type of deep eutectic solvents(DESs)is indispensable for expanding their application in various fields.Here,we report a series of new highly basic DESs.FT-IR,quantitative 1 H NMR,MD simulation and phy...Developing a new type of deep eutectic solvents(DESs)is indispensable for expanding their application in various fields.Here,we report a series of new highly basic DESs.FT-IR,quantitative 1 H NMR,MD simulation and physical properties show that these basic liquids are made up of hydroxide acceptor of alkali metal hydroxides in which the hydrogen bonding interactions coordinate the donor.These DESs can be played three roles as new solvents,template and reactant for facile and ultra-fast preparation of transition metal oxide nanomaterials such as NiCo2 O4,MnCo2 O4,NiMn2 O4,CoCu2 O4 and Co3 O4 under mild condition.This work shows one of the low energy-intensive methods for nanomaterial preparation.These initial findings of basic deep eutectic solvents provide a potential applicability around the systematic development of transition metal oxide nanosheets.展开更多
According to the Kamlet-Abraham-Taft(KAT)polarity parameters(α,β,π*),polymers and solvents can be categorized as hydrogen-bond(H-bond)acidic(α>β)or H-bond basic(α<β).Recently,we proposed a quantitative hy...According to the Kamlet-Abraham-Taft(KAT)polarity parameters(α,β,π*),polymers and solvents can be categorized as hydrogen-bond(H-bond)acidic(α>β)or H-bond basic(α<β).Recently,we proposed a quantitative hydrogen bonding(QHB)analysis to predict the solubility of polymers in ionic liquids(ILs)using the product ofΔαΔβ<0 as an indicator,whereΔαis the difference between the H-bond acidic parameters of the polymer and IL,andΔβis the difference in their basicity,while the prerequisite of the“complementary”principle(i.e.,that one component is H-bond acidic and the other is basic)is satisfied.Here,the applicability of QHB analysis was first confirmed by testing the solubilities of carefully chosen polymer/deep eutectic solvent(DES)pairs,as the DESs were eutectic mixtures dominated by hydrogen bonding interactions.Then,our attention focused on the solubility of cellulose in DESs.Our testing results as well as the typical published results were summarized,which indicate that the potential DESs for cellulose dissolution and regeneration must be of the H-bond basic type because the“complementary”principle should be satisfied as a prerequisite.However,the H-bond basic DESs investigated in this study do not show the superior solubility of cellulose that has been commonly observed for H-bond basic ILs,even if the criterion ofΔαΔβ<0 is satisfied for both DESs and ILs.Possible reasons for this discrepancy are given to understand the varying effectiveness in cellulose dissolution for H-bond basic DESs and ILs.展开更多
Sinomenine is the main bio-active ingredient of Sinomenii Caulis and usually produced by solventextraction techniques. However, the extraction of sinomenine suffers from the lack of highly efficient and environmentall...Sinomenine is the main bio-active ingredient of Sinomenii Caulis and usually produced by solventextraction techniques. However, the extraction of sinomenine suffers from the lack of highly efficient and environmentally-benign solvents. In this work, deep eutectic solvents(DESs) based on fragrances were synthesized, hydrogen-bond donors(HBDs) and hydrogen-bond acceptors(HBAs) components of DESs were identified and their extraction ability for sinomenine was evaluated and the extraction conditions were optimized by single-factor and orthogonal design experiments. It was found that the hydrogen-bonding interaction between sinomenine and DESs was the main extraction driving force and there was no explicit relationship between the extraction ability and the hydrophobicity of the DESs. The DESs could be recycled and sinomenine could be recovered quantitatively via backextraction. High-purity sinomenine((95.0 ± 2.3)%) could be produced. These findings suggest that DESs are highly-effective solvents for the isolation of sinomenine and exhibit great potential for the extraction of other bio-active compounds.展开更多
基金the EMOD,EAA and MTC Egypt for sponsoring this work
文摘The excellent corrosion resistance,formability and strength make stainless steels versatile for diverse applications.However,its high specific strength and good crashworthiness make it suitable for transportation and aerospace industry.On the other hand,the need to reduce the weight of vehicle and aerospace components has created renewed interest in the use of magnesium alloys.Due to their differences in physical and metallurgical properties,bonding of the 316L steel and AZ31 magnesium alloy using conventional fusion welding methods encountered many limitations.Therefore,the use of liquid phase forming interlayers is required to overcome the differences in their properties,eliminates the need for a high bonding pressure to achieve intimate contact between the bonded surfaces.Both Cu and Ni interlayers successively formed a eutectic phase with magnesium.The formation of intermetallics and Mg diffusion caused the eutectic phase to isothermally solidify with increasing bonding time.The formation of ternary intermetallic phases(λ1 and B2) impaired the bond shear strength particularly at the end of the isothermal solidification stage where no eutectic phase was observed.However,the joints showed a higher shear strength value of 57 MPa when bonding with Cu interlayer at 530℃ for 30 min compared to 32 MPa when Ni interlayer was used at 510℃ for 20 min.
基金financially supported by the State Key Program of National Natural Science Foundation of China(U21A20313)the Key Program of Qingyuan Innovation Laboratory(00221003)+2 种基金the“111”Program of Fuzhou Universitythe Natural Science Foundation of Fujian Province(2019J05040)the China Postdoctoral Science Foundation(2022M20739)。
文摘The exploitation of new green polymerization avenues for the effective synthesis of polymers by reversible-deactivation radical polymerization plays a critical role in pursuing the development of polymeric materials.In this work,serials of deep eutectic solvents(DES)with intermolecular-hydrogen-bonding interaction were constructed as catalysts and medium for actuating reversible complexation-mediated polymerization(RCMP)for the first time,yielding methacrylate polymers with high monomer conversion and narrow dispersion molecular weight in both water and oil systems.The mechanism and elementary reaction of RCMP were explored deeply,revealing that the complexation of initiator with DES to generate radicals was a ratecontrolling step and intermolecular-hydrogen-bond was primary factor to influence polymerization rate.Moreover,the insights of density functional theory calculations revealed that negative electrostatic potential ensured nucleophilic capacity.This investigation demonstrated the considerable potential of DES for RCMP,which is anticipated for other polymerization applications as a novel medium mode.
基金supported by the National Natural Science Foundation of China(Nos.21822407,21675164)the CASPresident International Fellowship Initiative(No.2017PC0014)。
文摘Developing a new type of deep eutectic solvents(DESs)is indispensable for expanding their application in various fields.Here,we report a series of new highly basic DESs.FT-IR,quantitative 1 H NMR,MD simulation and physical properties show that these basic liquids are made up of hydroxide acceptor of alkali metal hydroxides in which the hydrogen bonding interactions coordinate the donor.These DESs can be played three roles as new solvents,template and reactant for facile and ultra-fast preparation of transition metal oxide nanomaterials such as NiCo2 O4,MnCo2 O4,NiMn2 O4,CoCu2 O4 and Co3 O4 under mild condition.This work shows one of the low energy-intensive methods for nanomaterial preparation.These initial findings of basic deep eutectic solvents provide a potential applicability around the systematic development of transition metal oxide nanosheets.
基金the National Natural Science Foundation of China(No.21973105)the National Key R&D Program of China(No.2020YFC1910301).
文摘According to the Kamlet-Abraham-Taft(KAT)polarity parameters(α,β,π*),polymers and solvents can be categorized as hydrogen-bond(H-bond)acidic(α>β)or H-bond basic(α<β).Recently,we proposed a quantitative hydrogen bonding(QHB)analysis to predict the solubility of polymers in ionic liquids(ILs)using the product ofΔαΔβ<0 as an indicator,whereΔαis the difference between the H-bond acidic parameters of the polymer and IL,andΔβis the difference in their basicity,while the prerequisite of the“complementary”principle(i.e.,that one component is H-bond acidic and the other is basic)is satisfied.Here,the applicability of QHB analysis was first confirmed by testing the solubilities of carefully chosen polymer/deep eutectic solvent(DES)pairs,as the DESs were eutectic mixtures dominated by hydrogen bonding interactions.Then,our attention focused on the solubility of cellulose in DESs.Our testing results as well as the typical published results were summarized,which indicate that the potential DESs for cellulose dissolution and regeneration must be of the H-bond basic type because the“complementary”principle should be satisfied as a prerequisite.However,the H-bond basic DESs investigated in this study do not show the superior solubility of cellulose that has been commonly observed for H-bond basic ILs,even if the criterion ofΔαΔβ<0 is satisfied for both DESs and ILs.Possible reasons for this discrepancy are given to understand the varying effectiveness in cellulose dissolution for H-bond basic DESs and ILs.
基金financially supported by the National Natural Science Foundation of China ( 21307028)Foundation of Henan province (202102310614)+1 种基金the Fundamental Research Funds for the Universities of Henan Province (NSFRF210428)the Foundation of Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University (KJS2016)。
文摘Sinomenine is the main bio-active ingredient of Sinomenii Caulis and usually produced by solventextraction techniques. However, the extraction of sinomenine suffers from the lack of highly efficient and environmentally-benign solvents. In this work, deep eutectic solvents(DESs) based on fragrances were synthesized, hydrogen-bond donors(HBDs) and hydrogen-bond acceptors(HBAs) components of DESs were identified and their extraction ability for sinomenine was evaluated and the extraction conditions were optimized by single-factor and orthogonal design experiments. It was found that the hydrogen-bonding interaction between sinomenine and DESs was the main extraction driving force and there was no explicit relationship between the extraction ability and the hydrophobicity of the DESs. The DESs could be recycled and sinomenine could be recovered quantitatively via backextraction. High-purity sinomenine((95.0 ± 2.3)%) could be produced. These findings suggest that DESs are highly-effective solvents for the isolation of sinomenine and exhibit great potential for the extraction of other bio-active compounds.