In recent years, integrated electricity-gas systems(IEGSs) have attracted widespread attention. The unifiedscheduling and control of the IEGS depends on high-precisionoperating data. To this end, it is necessary to es...In recent years, integrated electricity-gas systems(IEGSs) have attracted widespread attention. The unifiedscheduling and control of the IEGS depends on high-precisionoperating data. To this end, it is necessary to establish anappropriate state estimation (SE) model for IEGS to filter theraw measured data. Considering that power systems and naturalgas systems have different time scales and sampling periods, thispaper proposes a dynamic state estimation (DSE) method basedon a Kalman filter that can consider the dynamic characteristicsof natural gas pipelines. First, the standardized state transitionequations for the gas system are developed by applying the finitedifference method to the partial differential equations (PDEs) ofthe gas system;then the DSE model for IEGS is formulatedbased on a Kalman filter;also, the measurements from theelectricity system and the gas system with different samplingperiods are fused to ensure the observability of DSE by using theinterpolation method. The IEEE 39-bus electricity system and the18-nodes Belgium gas system are integrated as the test systems.Simulation results verify the proposed method’s accuracy andcalculation efficiency.展开更多
State estimation(SE)usually serves as the basic function of the energy management system(EMS).In this paper,the time-scale characteristics of the integrated heat and electricity networks are studied and an SE model is...State estimation(SE)usually serves as the basic function of the energy management system(EMS).In this paper,the time-scale characteristics of the integrated heat and electricity networks are studied and an SE model is established.Then,a two-stage iterative algorithm is proposed to estimate the time delay of heat power transportation in the pipeline.Meanwhile,to accommodate the measuring resolutions of the integrated network,a hybrid SE approach is developed based on the two-stage iterative algorithm.Results show that,in both steady and dynamic processes,the two-stage estimator has good accuracy and convergence.The hybrid estimator has good performance on tracking the variation of the states in the heating network,even when the available measurements are limited.展开更多
Accurate estimation of crop yields is crucial for ensuring food security. However, crops are distributed so fragmentally in China that mixed pixels account for a large proportion in moderate and coarse resolution remo...Accurate estimation of crop yields is crucial for ensuring food security. However, crops are distributed so fragmentally in China that mixed pixels account for a large proportion in moderate and coarse resolution remote sensing images. As a result, unmixing of mixed pixel becomes a major problem to estimate crop yield by means of remote sensing method. Aimed at mixed pixels, we developed a new method to introduce additional information contained in the spatial scaling transformation equation to the canopy reflectance model. The crop area and LAI can be retrieved simultaneously. On the basis of a precise and simple canopy reflectance model, directional second derivative method was chosen to retrieve LAI from optimal bands of hyper-spectral data; this method can reduce the impact of the canopy non-isotropic features and soil background. To evaluate the performance of the method, Yingke Oasis, Zhangye City, Gansu Province, was chosen as the validation area. This area was covered mainly by maize and wheat. A Hyperion/EO-1 image with the 30 m spatial resolution was acquired on July 15, 2008. Images of 180 m and 1080 m resolutions were generated by linearly interpolating the original Hyperion image to coarser resolutions. Then a multi-scale image serial was obtained. Using the proposed method, we calculated crop area and the average LAI of every 1080 m pixel. A SPOT-5 classification figure serves as the validation data of crop area proportion. Results show that the pattern of crop distribution accords with the classification figure. The errors are restrained mainly to -0.1-0.1, and approximate a Normal Distribution. Meanwhile, 85 LAI values obtained using LAI-2000 Plant Canopy Analyzer, equipped with GPS, were taken as the ground reference. Results show that the standard deviation of the errors is 0.340. The method proposed in the paper is reliable.展开更多
基金This work was supported in part by National Natural Science Foundation of China(51777067)and(52077076)in part by funding from the State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources(LAPS2021-18).
文摘In recent years, integrated electricity-gas systems(IEGSs) have attracted widespread attention. The unifiedscheduling and control of the IEGS depends on high-precisionoperating data. To this end, it is necessary to establish anappropriate state estimation (SE) model for IEGS to filter theraw measured data. Considering that power systems and naturalgas systems have different time scales and sampling periods, thispaper proposes a dynamic state estimation (DSE) method basedon a Kalman filter that can consider the dynamic characteristicsof natural gas pipelines. First, the standardized state transitionequations for the gas system are developed by applying the finitedifference method to the partial differential equations (PDEs) ofthe gas system;then the DSE model for IEGS is formulatedbased on a Kalman filter;also, the measurements from theelectricity system and the gas system with different samplingperiods are fused to ensure the observability of DSE by using theinterpolation method. The IEEE 39-bus electricity system and the18-nodes Belgium gas system are integrated as the test systems.Simulation results verify the proposed method’s accuracy andcalculation efficiency.
基金supported by the National Natural Science Foundation of China(NSFC)(No.51537006)the China Postdoctoral Science Foundation(No.2019M650675)
文摘State estimation(SE)usually serves as the basic function of the energy management system(EMS).In this paper,the time-scale characteristics of the integrated heat and electricity networks are studied and an SE model is established.Then,a two-stage iterative algorithm is proposed to estimate the time delay of heat power transportation in the pipeline.Meanwhile,to accommodate the measuring resolutions of the integrated network,a hybrid SE approach is developed based on the two-stage iterative algorithm.Results show that,in both steady and dynamic processes,the two-stage estimator has good accuracy and convergence.The hybrid estimator has good performance on tracking the variation of the states in the heating network,even when the available measurements are limited.
基金supported by National Natural Science Foundation of China (Grant Nos.40871186,40730525,40401036)National High Technology Research and Development Program of China (Grant No.2009AA12Z143)+1 种基金Special Funds for National Basic Research Program of China (Grant No.2007CB714402)"Simultaneous Remote Sensing and Groundbased Experiment in Heihe River Basin and Comprehensive Platform Construction" in Chinese Academy of Sciences’ Action-Plan for West Development (the second phase) (Grant No.KZCX2-XB2-09)
文摘Accurate estimation of crop yields is crucial for ensuring food security. However, crops are distributed so fragmentally in China that mixed pixels account for a large proportion in moderate and coarse resolution remote sensing images. As a result, unmixing of mixed pixel becomes a major problem to estimate crop yield by means of remote sensing method. Aimed at mixed pixels, we developed a new method to introduce additional information contained in the spatial scaling transformation equation to the canopy reflectance model. The crop area and LAI can be retrieved simultaneously. On the basis of a precise and simple canopy reflectance model, directional second derivative method was chosen to retrieve LAI from optimal bands of hyper-spectral data; this method can reduce the impact of the canopy non-isotropic features and soil background. To evaluate the performance of the method, Yingke Oasis, Zhangye City, Gansu Province, was chosen as the validation area. This area was covered mainly by maize and wheat. A Hyperion/EO-1 image with the 30 m spatial resolution was acquired on July 15, 2008. Images of 180 m and 1080 m resolutions were generated by linearly interpolating the original Hyperion image to coarser resolutions. Then a multi-scale image serial was obtained. Using the proposed method, we calculated crop area and the average LAI of every 1080 m pixel. A SPOT-5 classification figure serves as the validation data of crop area proportion. Results show that the pattern of crop distribution accords with the classification figure. The errors are restrained mainly to -0.1-0.1, and approximate a Normal Distribution. Meanwhile, 85 LAI values obtained using LAI-2000 Plant Canopy Analyzer, equipped with GPS, were taken as the ground reference. Results show that the standard deviation of the errors is 0.340. The method proposed in the paper is reliable.