In this review, we give a retrospect of the recent progress in nonequilibrium statistical mechanics and thermodynamics in small dynamical systems. For systems with only a few number of particles, fluctuations and nonl...In this review, we give a retrospect of the recent progress in nonequilibrium statistical mechanics and thermodynamics in small dynamical systems. For systems with only a few number of particles, fluctuations and nonlinearity become sig- nificant and contribute to the nonequilibrium behaviors of the systems, hence the statistical properties and thermodynamics should be carefully studied. We review recent developments of this topic by starting from the Gallavotti-Cohen fluctuation theorem, and then to the Evans-Searles transient fluctuation theorem, Jarzynski free-energy equality, and the Crooks fluc- tuation relation. We also investigate the nonequilibrium free energy theorem for trajectories involving changes of the heat bath temperature and propose a generalized free-energy relation. It should be noticed that the non-Markovian property of the heat bath may lead to the violation of the free-energy relation.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 11075016)the Foundation for Doctoral Training from the Ministry of Education of China (Grant No. 20100003110007)
文摘In this review, we give a retrospect of the recent progress in nonequilibrium statistical mechanics and thermodynamics in small dynamical systems. For systems with only a few number of particles, fluctuations and nonlinearity become sig- nificant and contribute to the nonequilibrium behaviors of the systems, hence the statistical properties and thermodynamics should be carefully studied. We review recent developments of this topic by starting from the Gallavotti-Cohen fluctuation theorem, and then to the Evans-Searles transient fluctuation theorem, Jarzynski free-energy equality, and the Crooks fluc- tuation relation. We also investigate the nonequilibrium free energy theorem for trajectories involving changes of the heat bath temperature and propose a generalized free-energy relation. It should be noticed that the non-Markovian property of the heat bath may lead to the violation of the free-energy relation.