Integrated energy distribution system(IEDS)is one of the integrated energy and power system forms,which involves electricity/gas/cold/heat and other various energy forms.The energy coupling relationship is close and c...Integrated energy distribution system(IEDS)is one of the integrated energy and power system forms,which involves electricity/gas/cold/heat and other various energy forms.The energy coupling relationship is close and complex.IEDS is the focus of regional energy internet research and development at home and abroad.Compared with the traditional power distribution system,IEDS through the multi-energy coupling link comprehensive utilization,effectively improve the distribution system economy,safety,reliability,flexibility and toughness,but also to ease the regional energy system environmental pressure.IEDS is an important direction for the future development of energy systems,and its related research and practice on China’s energy system development also has important practical and strategic significance.This paper summarizes the related researches of the IEDS and explores the energy operation characteristics and coupling mechanisms.What’s more,the integrated model of IEDS is summarized.On these bases,this paper discusses and prospects some key issues such as joint planning,optimization control and security analysis,state estimation and situational awareness and generalized demand side management.展开更多
The aim of this research study is to present a method for analyzing the performance of the wireless inductive charge-while-driving(CWD)electric vehicles,from both traffic and energy points of view.To accurately quanti...The aim of this research study is to present a method for analyzing the performance of the wireless inductive charge-while-driving(CWD)electric vehicles,from both traffic and energy points of view.To accurately quantify the electric power required from an energy supplier for the proper management of the charging system,a traffic simulation model is implemented.This model is based on a mesoscopic approach,and it is applied to a freight distribution scenario.Lane changing and positioning are managed according to a cooperative system among vehicles and supported by advanced driver assistance systems(ADAS).From the energy point of view,the analyses indicate that the traffic may have the following effects on the energy of the system:in a low traffic level scenario,the maximum power that should be supplied for the entire road is simulated at approximately 9 MW;and in a high level traffic scenario with lower average speeds,the maximum power required by the vehicles in the charging lane increases by more than 50%.展开更多
This paper is concerned with the problem of finitehorizon energy-to-peak state estimation for a class of networked linear time-varying systems.Due to the inherent vulnerability of network-based communication,the measu...This paper is concerned with the problem of finitehorizon energy-to-peak state estimation for a class of networked linear time-varying systems.Due to the inherent vulnerability of network-based communication,the measurement signals transmitted over a communication network might be intercepted by potential eavesdroppers.To avoid information leakage,by resorting to an artificial-noise-assisted method,we develop a novel encryption-decryption scheme to ensure that the transmitted signal is composed of the raw measurement and an artificial-noise term.A special evaluation index named secrecy capacity is employed to assess the information security of signal transmissions under the developed encryption-decryption scheme.The purpose of the addressed problem is to design an encryptiondecryption scheme and a state estimator such that:1)the desired secrecy capacity is ensured;and 2)the required finite-horizon–l_(2)-l_(∞)performance is achieved.Sufficient conditions are established on the existence of the encryption-decryption mechanism and the finite-horizon state estimator.Finally,simulation results are proposed to show the effectiveness of our proposed encryption-decryption-based state estimation scheme.展开更多
基金This work was supported by the National High Technology Research and Development Program(863 Program)of China(2015AA050403)Natural Science Foundation of Tianjin(17JCQNJC06600)+2 种基金Independent Innovation Foundation of Tianjin University(Research on Key Technology of Distributed Demand Response)Ocean Engineering Equipment and Technical Think Tank Joint Project of Qingdao(201707071003)the Distributed Energy and Microgrid Project conducted in collaboration with APPLIED ENERGY UNiLAB-DEM.
文摘Integrated energy distribution system(IEDS)is one of the integrated energy and power system forms,which involves electricity/gas/cold/heat and other various energy forms.The energy coupling relationship is close and complex.IEDS is the focus of regional energy internet research and development at home and abroad.Compared with the traditional power distribution system,IEDS through the multi-energy coupling link comprehensive utilization,effectively improve the distribution system economy,safety,reliability,flexibility and toughness,but also to ease the regional energy system environmental pressure.IEDS is an important direction for the future development of energy systems,and its related research and practice on China’s energy system development also has important practical and strategic significance.This paper summarizes the related researches of the IEDS and explores the energy operation characteristics and coupling mechanisms.What’s more,the integrated model of IEDS is summarized.On these bases,this paper discusses and prospects some key issues such as joint planning,optimization control and security analysis,state estimation and situational awareness and generalized demand side management.
基金This study is partially supported by the eCo-FEV project(Grant agreement No.314411).
文摘The aim of this research study is to present a method for analyzing the performance of the wireless inductive charge-while-driving(CWD)electric vehicles,from both traffic and energy points of view.To accurately quantify the electric power required from an energy supplier for the proper management of the charging system,a traffic simulation model is implemented.This model is based on a mesoscopic approach,and it is applied to a freight distribution scenario.Lane changing and positioning are managed according to a cooperative system among vehicles and supported by advanced driver assistance systems(ADAS).From the energy point of view,the analyses indicate that the traffic may have the following effects on the energy of the system:in a low traffic level scenario,the maximum power that should be supplied for the entire road is simulated at approximately 9 MW;and in a high level traffic scenario with lower average speeds,the maximum power required by the vehicles in the charging lane increases by more than 50%.
基金This work was supported in part by the National Natural Science Foundation of China(62273087,61933007,62273088,U21A2019,62073180)the Shanghai Pujiang Program of China(22PJ1400400)+3 种基金the Program of Shanghai Academic/Technology Research Leader of China(20XD1420100)the European Union’s Horizon 2020 Research and Innovation Programme(820776)(INTEGRADDE)the Royal Society of UKthe Alexander von Humboldt Foundation of Germany.
文摘This paper is concerned with the problem of finitehorizon energy-to-peak state estimation for a class of networked linear time-varying systems.Due to the inherent vulnerability of network-based communication,the measurement signals transmitted over a communication network might be intercepted by potential eavesdroppers.To avoid information leakage,by resorting to an artificial-noise-assisted method,we develop a novel encryption-decryption scheme to ensure that the transmitted signal is composed of the raw measurement and an artificial-noise term.A special evaluation index named secrecy capacity is employed to assess the information security of signal transmissions under the developed encryption-decryption scheme.The purpose of the addressed problem is to design an encryptiondecryption scheme and a state estimator such that:1)the desired secrecy capacity is ensured;and 2)the required finite-horizon–l_(2)-l_(∞)performance is achieved.Sufficient conditions are established on the existence of the encryption-decryption mechanism and the finite-horizon state estimator.Finally,simulation results are proposed to show the effectiveness of our proposed encryption-decryption-based state estimation scheme.