An eight-channel force loading system is presented, which adopts position control system and force control system switching model, small flow servo valve controlled capacious cylinder system scheme, intelligent PID al...An eight-channel force loading system is presented, which adopts position control system and force control system switching model, small flow servo valve controlled capacious cylinder system scheme, intelligent PID algorithm and distributed load approach. Through the analyses of the equivalent model of valve controlled cylinder force subsystem, a controller based on intelligent PID algorithm is designed, which is not sensitive to the variation of parameters such as environmental stiffness. According to the coupling of multiple load channels, a distributed load approach is employed in the superior monitor computer. Experimental results show that the system designed has high precision and robustness.展开更多
液压负载模拟器是典型的电液伺服加载系统(EHSLS)。介绍了液压负载模拟器的结构和工作原理,建立了其数学模型,并对控制系统进行了设计和仿真分析。由于液压负载模拟器是典型的力伺服系统,设计CMAC(Cerebellar Model Articulation Contro...液压负载模拟器是典型的电液伺服加载系统(EHSLS)。介绍了液压负载模拟器的结构和工作原理,建立了其数学模型,并对控制系统进行了设计和仿真分析。由于液压负载模拟器是典型的力伺服系统,设计CMAC(Cerebellar Model Articulation Controller)与PID并行控制方案,克服了常规PID控制参数整定不良、性能欠佳,适应性较差的缺点。仿真表明负载模拟器表现了较强的力矩跟踪能力。展开更多
文摘An eight-channel force loading system is presented, which adopts position control system and force control system switching model, small flow servo valve controlled capacious cylinder system scheme, intelligent PID algorithm and distributed load approach. Through the analyses of the equivalent model of valve controlled cylinder force subsystem, a controller based on intelligent PID algorithm is designed, which is not sensitive to the variation of parameters such as environmental stiffness. According to the coupling of multiple load channels, a distributed load approach is employed in the superior monitor computer. Experimental results show that the system designed has high precision and robustness.
文摘液压负载模拟器是典型的电液伺服加载系统(EHSLS)。介绍了液压负载模拟器的结构和工作原理,建立了其数学模型,并对控制系统进行了设计和仿真分析。由于液压负载模拟器是典型的力伺服系统,设计CMAC(Cerebellar Model Articulation Controller)与PID并行控制方案,克服了常规PID控制参数整定不良、性能欠佳,适应性较差的缺点。仿真表明负载模拟器表现了较强的力矩跟踪能力。