This paper presents a systematic analysis of DC voltage stability of a multi-terminal VSC-HVDC(MTDC)system,with the emphasis on a comparative study of the most ubiquitous droop control configurations.The paper introdu...This paper presents a systematic analysis of DC voltage stability of a multi-terminal VSC-HVDC(MTDC)system,with the emphasis on a comparative study of the most ubiquitous droop control configurations.The paper introduces a general framework for the analysis of various droop control configurations employed in MTDC systems.This framework is then used to compare leading droop control configurations in terms of their impact on the relative stability,performance and robustness of the overall MTDC system.A generalized analytical MTDC model that contains detailed models of AC and DC system components is derived.Limitations imposed by DC power flow,DC inductor,cable modeling and AC network impedance on DC system stability are identified.Classical and multivariable frequency response analysis and eigenvalue analysis are applied to open-loop and closed-loop models to compare the stability and robustness of five leading droop controllers,with the focus on feedback signal selection and controller parameterization.This paper also proposes an active stabilizing controller,which takes the form of a modified constant power control,to enhance the controllability and robustness of the DC voltage control.展开更多
Multi-terminal direct current(MTDC)grids provide the possibility of meshed interconnections between regional power systems and various renewable energy resources to boost supply reliability and economy.The modular mul...Multi-terminal direct current(MTDC)grids provide the possibility of meshed interconnections between regional power systems and various renewable energy resources to boost supply reliability and economy.The modular multilevel converter(MMC)has become the basic building block for MTDC and DC grids due to its salient features,i.e.,modularity and scalability.Therefore,the MMC-based MTDC systems should be pervasively embedded into the present power system to improve system performance.However,several technical challenges hamper their practical applications and deployment,including modeling,control,and protection of the MMC-MTDC grids.This paper presents a comprehensive investigation and reference in modeling,control,and protection of the MMC-MTDC grids.A general overview of state-of-the-art modeling techniques of the MMC along with their performance in simulation analysis for MTDC applications is provided.A review of control strategies of the MMC-MTDC grids which provide AC system support is presented.State-of-the art protection techniques of the MMCMTDC systems are also investigated.Finally,the associated research challenges and trends are highlighted.展开更多
Auxiliary frequency control of a wind turbine generator(WTG) has been widely used to enhance the frequencysecurity of power systems with high penetration of renewableenergy. Previous studies recommend two types of con...Auxiliary frequency control of a wind turbine generator(WTG) has been widely used to enhance the frequencysecurity of power systems with high penetration of renewableenergy. Previous studies recommend two types of control schemes,including frequency droop control and emulated inertia control,which simulate the response characteristics of the synchronousgenerator (SG). This paper plans to further explore the optimalauxiliary frequency control of the wind turbine based on previousresearch. First, it is determined that the virtual inertia control haslittle effect on the maximum rate of change of frequency (MaxROCOF)if the time delay of the control link of WTG is taken intoconsideration. Secondly, if a WTG operates in maximum powerpoint tracking (MPPT) mode and uses the rotor deceleration forfrequency modulation, its optimal auxiliary frequency control willcontain only droop control. Furthermore, if the droop control isproperly delayed, better system frequency response (SFR) willbe obtained. The reason is that coordination between the WTGand SG is important for SFR when the frequency modulationcapability of the WTG is limited. The frequency modulationcapability of the WTG is required to be released more properly.Therefore, when designing optimal auxiliary frequency controlfor the WTG, a better control scheme is worth further study.展开更多
With the rapid development of power electronics technology, microgrid(MG) concept has been widely accepted in the field of electrical engineering. Due to the advantages of direct current(DC)distribution systems such a...With the rapid development of power electronics technology, microgrid(MG) concept has been widely accepted in the field of electrical engineering. Due to the advantages of direct current(DC)distribution systems such as reduced losses and easy integration with energy storage resources, DC MGs have drawn increasing attentions nowadays. With the increase of distributed generation, a DC MG consisting of multiple sources is a hot research topic. The challenge in such a multi-source DC MG is to provide voltage support and good power sharing performance. As the control strategy plays an important role in ensuring MG’s power quality and efficiency, a comprehensive review of the state-of-art control approaches in DC MGs is necessary. This paper provides an overview of the primary and secondary control methods under the hierarchical control architecture for DC MGs. Specifically,inner loop and droop control approaches in primary control are reviewed. Centralized, distributed and decentralized approach based secondary control is discussed in details.Key findings and future trends are also presented at last.展开更多
In this paper,a VSG(virtual synchronous generator)-based method with adaptive active power and DC voltage droop is proposed for the control of VSC stations in the multi-terminal DC(MTDC)system.This control strategy ca...In this paper,a VSG(virtual synchronous generator)-based method with adaptive active power and DC voltage droop is proposed for the control of VSC stations in the multi-terminal DC(MTDC)system.This control strategy can improve the inertial level of the AC networks and attenuate the rate of change of frequency when a disturbance occurs.In addition,the droop control of the active power and DC voltage is implemented to make the AC networks share the unbalanced power in the MTDC.The droop coefficients are adaptively adjusted depending on the frequency margin of every AC network,which makes the allocation of unbalanced power among AC networks more reasonable from the frequency variation perspective.The control strategy is evaluated in the scenarios of sudden load change and wind turbine tripping,and the results are presented to demonstrate its effectiveness.展开更多
When the line impedance is considered in the microgrid, the accuracy of load sharing will decrease. In this paper, the impact of line impedance on the accuracy of load sharing is analyzed. A robust droop control for a...When the line impedance is considered in the microgrid, the accuracy of load sharing will decrease. In this paper, the impact of line impedance on the accuracy of load sharing is analyzed. A robust droop control for a highvoltage microgrid is proposed based on the signal detection on the high-voltage side of the coupling transformer. For a high-voltage microgrid, the equivalent impedance of coupling transformer connecting distributed generator with the grid is usually the dominate factor. Compared with the conventional droop control strategy, the proposed control method in this paper detects the feedback signal from the high-voltage side of the coupling transformer. The impact of line impedance on the load sharing accuracy can be mitigated significantly. The proposed droop control only changes the detection point of the feedback signal, thus it is easy to be implemented. The PSCAD/EMTDC simulation results show the effectiveness of the proposed robust droop control concept in load sharing and voltage regulation with highly accuracy.展开更多
A hierarchical control scheme is proposed for optimal power flow control to minimize loss in a hybrid multiterminal HVDC(hybrid-MTDC)transmission system.In this scheme,the lower level is the droop control,which enable...A hierarchical control scheme is proposed for optimal power flow control to minimize loss in a hybrid multiterminal HVDC(hybrid-MTDC)transmission system.In this scheme,the lower level is the droop control,which enables fast response to power fluctuation and ensures a stable DC voltage,and the upper level is power flow optimization control,which minimizes the losses during the operation of hybrid-MTDC and solves the contradiction between minimizing losses and preventing commutation failure.A 6-terminal hybrid-MTDC is also designed and simulated in PSCAD according to the potential demand of power transmission and wind farms integration in China to verify the proposed control strategy.First,the steady state analysis is conducted and then compared with simulation results.The analysis shows that the proposed control scheme achieves the desired minimum losses while at the same time satisfying system constraints.The proposed control scheme also guarantees that the hybrid-MTDC not only has a good dynamic response,but also remains stable during communication failure.展开更多
Decreasing costs and favorable policies have resulted in increased penetration of solar photovoltaic(PV)power generation in distribution networks.As the PV systems penetration is likely to increase in the future,utili...Decreasing costs and favorable policies have resulted in increased penetration of solar photovoltaic(PV)power generation in distribution networks.As the PV systems penetration is likely to increase in the future,utilizing the reactive power capability of PV inverters to mitigate voltage deviations is being promoted.In recent years,droop control of inverter-based distributed energy resources has emerged as an essential tool for use in this study.The participation of PV systems in voltage regulation and its coordination with existing controllers,such as on-load tap changers,is paramount for controlling the voltage within specified limits.In this work,control strategies are presented that can be coordinated with the existing controls in a distributed manner.The effectiveness of the proposed method was demonstrated through simulation results on a distribution system.展开更多
For demonstrating a multiterminal voltage-source converter(VSC)-based high-voltage DC(HVDC)(VSCHVDC) project, this study puts forward a technical route for calculating the power flow in a 500-kV VSC-HVDC power grid in...For demonstrating a multiterminal voltage-source converter(VSC)-based high-voltage DC(HVDC)(VSCHVDC) project, this study puts forward a technical route for calculating the power flow in a 500-kV VSC-HVDC power grid in comparison with that of an AC power grid. The Jacobian matrix used in the power-flow calculation was deduced through methods such as Newton–Laphson iteration and Taylor series expansion. Further, the operation effect of powerflow calculation on a true bipolar VSC-HVDC power grid was analyzed briefly. The elements of the Jacobian matrix corresponding to VSC were studied under the mode of droop control and the control strategy of VSC-HVDC power grid was analyzed in detail. The power-flow calculation model for VSC-HVDC power grid of the master–slave control mode was simplified using the PQ decomposition method of the power-flow calculation of an AC power grid. Moreover, a four-terminal model of the Zhangbei VSC-HVDC demonstration project was established and tested on MATLAB. The simulation results under two kinds of operating conditions were analyzed and compared to the results of BPA; the deviation between the power-flow results was studied. The results show that the proposed calculation method can provide a feasible support for calculating the power flow in VSC-HVDC grids.展开更多
Multi-terminal high-voltage DC(MTDC)technology is a promising way to transmit large amounts of offshore wind power to the main grids.This paper proposes a hybrid MTDC scheme to integrate several offshore wind farms in...Multi-terminal high-voltage DC(MTDC)technology is a promising way to transmit large amounts of offshore wind power to the main grids.This paper proposes a hybrid MTDC scheme to integrate several offshore wind farms into the onshore power grids at different locations.A hybrid four-terminal HVDC system comprising two onshore line commutated converters(LCCs)and two voltage source converters(VSCs)connecting an offshore wind farm is constructed in PSCAD/EMTDC.A coordination control scheme based on the VSCs’AC voltage control and the LCCs’DC voltage droop control is designed to ensure smooth system operation and proper power sharing between onshore AC grids.The operational characteristics of the system are analyzed.In addition,a black start-up method without any auxiliary power supply for the VSCs is proposed.The transmission scheme is tested through simulations under various conditions,including start-up,wind speed variation,and the disconnection of one VSC or of one LCC.展开更多
Since micro-sources are mostly interfaced to microgrid by power inverters,this paper gives an insight of the control methods of the micro-source inverters by reviewing some recent documents.Firstly,the basic principle...Since micro-sources are mostly interfaced to microgrid by power inverters,this paper gives an insight of the control methods of the micro-source inverters by reviewing some recent documents.Firstly,the basic principles of different inverter control methods are illustrated by analyzing the electrical circuits and control loops.Then,the main problems and some typical improved schemes of theωU-droop grid-supporting inverter are presented.In results and discussion part,the comparison of different kinds of inverters is presented and some notable research points is discussed.It is concluded that the most promising control method should be theωU-droop control,and it is meaningful to study the performance improvement methods under realistic operation conditions in the future work.展开更多
In the light of user-side energy power control requirements, a power control strategy for a household-level EPR based on HES droop control is proposed, focusing on the on-grid, off-grid and seamless switching process....In the light of user-side energy power control requirements, a power control strategy for a household-level EPR based on HES droop control is proposed, focusing on the on-grid, off-grid and seamless switching process. The system operating states are divided based on the DC bus voltage information with one converter used as a slack terminal to stabilize the DC bus voltage and the other converters as power terminals. In the on-grid mode, the GCC and the HES are used as the main control unit to achieve on-grid stable operation, whereas in the off-grid mode, the PV, HES and LC are used as the main control unit at different voltages to achieve stable operation of the island network. Finally, a DC MG system based on a household-level EPR is developed using the PSCAD / EMTDC simulation platform and the results show that the control strategy can effectively adjust the output of each subunit and maintain the stability of the DC bus voltage.展开更多
Grid-forming(GFM)converters can provide inertia support for power grids through control technology,stabilize voltage and frequency,and improve system stability,unlike traditional grid-following(GFL)converters.Therefor...Grid-forming(GFM)converters can provide inertia support for power grids through control technology,stabilize voltage and frequency,and improve system stability,unlike traditional grid-following(GFL)converters.Therefore,in future“double high”power systems,research on the control technology of GFM converters will become an urgent demand.In this paper,we first introduce the basic principle of GFM control and then present five currently used control strategies for GFM converters:droop control,power synchronization control(PSC),virtual synchronous machine control(VSM),direct power control(DPC),and virtual oscillator control(VOC).These five strategies can independently establish voltage phasors to provide inertia to the system.Among these,droop control is the most widely used strategy.PSC and VSM are strategies that simulate the mechanical characteristics of synchronous generators;thus,they are more accurate than droop control.DPC regulates the active power and reactive power directly,with no inner current controller,and VOC is a novel method under study using an oscillator circuit to realize synchronization.Finally,we highlight key technologies and research directions to be addressed in the future.展开更多
Since the fault dynamic of droop-controlled inverter is different from synchronous generators (SGs), protection devices may become invalid, and the fault overcurrent may damage power electronic devices and threaten th...Since the fault dynamic of droop-controlled inverter is different from synchronous generators (SGs), protection devices may become invalid, and the fault overcurrent may damage power electronic devices and threaten the safety of the microgrid. Therefore, it is imperative to conduct a comprehensive fault analysis of the inverter to guide the design of protection schemes. However, due to the complexity of droop control strategy, existing literatures have simplified asymmetric fault analysis of droop-controlled inverters to varying degrees. Therefore, accurate fault analysis of a droop-controlled inverter is needed. In this paper, by analyzing the control system, an accurate fault model is established. Based on this, a calculation method for instantaneous asymmetrical fault current is proposed. In addition, the current components and current characteristics are analyzed. It was determined that fault currents are affected by control loops, fault types, fault distance and nonlinear limiters. In particular, the influences of limiters on the fault model, fault current calculation and fault current characteristics were analyzed. Through detailed analysis, it was found that dynamics of the control loop cannot be ignored, the fault type and fault distance determine fault current level, and part of the limiters will totally change the fault current trend. Finally, calculation and experimental results verify the correctness of the proposed method.展开更多
基金This work was supported by the UK Engineering and Physical Science Council Project(EP/L102463/1).
文摘This paper presents a systematic analysis of DC voltage stability of a multi-terminal VSC-HVDC(MTDC)system,with the emphasis on a comparative study of the most ubiquitous droop control configurations.The paper introduces a general framework for the analysis of various droop control configurations employed in MTDC systems.This framework is then used to compare leading droop control configurations in terms of their impact on the relative stability,performance and robustness of the overall MTDC system.A generalized analytical MTDC model that contains detailed models of AC and DC system components is derived.Limitations imposed by DC power flow,DC inductor,cable modeling and AC network impedance on DC system stability are identified.Classical and multivariable frequency response analysis and eigenvalue analysis are applied to open-loop and closed-loop models to compare the stability and robustness of five leading droop controllers,with the focus on feedback signal selection and controller parameterization.This paper also proposes an active stabilizing controller,which takes the form of a modified constant power control,to enhance the controllability and robustness of the DC voltage control.
基金funded by SGCC Science and Technology Program under project Research on Electromagnetic Transient Simulation Technology for Large-scale MMC-HVDC Systems.
文摘Multi-terminal direct current(MTDC)grids provide the possibility of meshed interconnections between regional power systems and various renewable energy resources to boost supply reliability and economy.The modular multilevel converter(MMC)has become the basic building block for MTDC and DC grids due to its salient features,i.e.,modularity and scalability.Therefore,the MMC-based MTDC systems should be pervasively embedded into the present power system to improve system performance.However,several technical challenges hamper their practical applications and deployment,including modeling,control,and protection of the MMC-MTDC grids.This paper presents a comprehensive investigation and reference in modeling,control,and protection of the MMC-MTDC grids.A general overview of state-of-the-art modeling techniques of the MMC along with their performance in simulation analysis for MTDC applications is provided.A review of control strategies of the MMC-MTDC grids which provide AC system support is presented.State-of-the art protection techniques of the MMCMTDC systems are also investigated.Finally,the associated research challenges and trends are highlighted.
基金the National Natural Science Foundation of China(51922061)the Science and Technology Project of State Grid Corporation of China(SGZJ0000KXJS1900418).
文摘Auxiliary frequency control of a wind turbine generator(WTG) has been widely used to enhance the frequencysecurity of power systems with high penetration of renewableenergy. Previous studies recommend two types of control schemes,including frequency droop control and emulated inertia control,which simulate the response characteristics of the synchronousgenerator (SG). This paper plans to further explore the optimalauxiliary frequency control of the wind turbine based on previousresearch. First, it is determined that the virtual inertia control haslittle effect on the maximum rate of change of frequency (MaxROCOF)if the time delay of the control link of WTG is taken intoconsideration. Secondly, if a WTG operates in maximum powerpoint tracking (MPPT) mode and uses the rotor deceleration forfrequency modulation, its optimal auxiliary frequency control willcontain only droop control. Furthermore, if the droop control isproperly delayed, better system frequency response (SFR) willbe obtained. The reason is that coordination between the WTGand SG is important for SFR when the frequency modulationcapability of the WTG is limited. The frequency modulationcapability of the WTG is required to be released more properly.Therefore, when designing optimal auxiliary frequency controlfor the WTG, a better control scheme is worth further study.
文摘With the rapid development of power electronics technology, microgrid(MG) concept has been widely accepted in the field of electrical engineering. Due to the advantages of direct current(DC)distribution systems such as reduced losses and easy integration with energy storage resources, DC MGs have drawn increasing attentions nowadays. With the increase of distributed generation, a DC MG consisting of multiple sources is a hot research topic. The challenge in such a multi-source DC MG is to provide voltage support and good power sharing performance. As the control strategy plays an important role in ensuring MG’s power quality and efficiency, a comprehensive review of the state-of-art control approaches in DC MGs is necessary. This paper provides an overview of the primary and secondary control methods under the hierarchical control architecture for DC MGs. Specifically,inner loop and droop control approaches in primary control are reviewed. Centralized, distributed and decentralized approach based secondary control is discussed in details.Key findings and future trends are also presented at last.
基金supported by the National Nature Science Foundation of China(51621065,51567021)Independent Research Program of Tsinghua University(20151080416)China Postdoctoral Science Foundation(2016M601025).
文摘In this paper,a VSG(virtual synchronous generator)-based method with adaptive active power and DC voltage droop is proposed for the control of VSC stations in the multi-terminal DC(MTDC)system.This control strategy can improve the inertial level of the AC networks and attenuate the rate of change of frequency when a disturbance occurs.In addition,the droop control of the active power and DC voltage is implemented to make the AC networks share the unbalanced power in the MTDC.The droop coefficients are adaptively adjusted depending on the frequency margin of every AC network,which makes the allocation of unbalanced power among AC networks more reasonable from the frequency variation perspective.The control strategy is evaluated in the scenarios of sudden load change and wind turbine tripping,and the results are presented to demonstrate its effectiveness.
基金supported by the National Natural Science Foundation of China(No.51207048)the National High Technology Research and Development of China(No.2014AA052601)Higher National Excellent Doctoral Dissertation of Special Funds(No.201441)
文摘When the line impedance is considered in the microgrid, the accuracy of load sharing will decrease. In this paper, the impact of line impedance on the accuracy of load sharing is analyzed. A robust droop control for a highvoltage microgrid is proposed based on the signal detection on the high-voltage side of the coupling transformer. For a high-voltage microgrid, the equivalent impedance of coupling transformer connecting distributed generator with the grid is usually the dominate factor. Compared with the conventional droop control strategy, the proposed control method in this paper detects the feedback signal from the high-voltage side of the coupling transformer. The impact of line impedance on the load sharing accuracy can be mitigated significantly. The proposed droop control only changes the detection point of the feedback signal, thus it is easy to be implemented. The PSCAD/EMTDC simulation results show the effectiveness of the proposed robust droop control concept in load sharing and voltage regulation with highly accuracy.
基金supported in part by the 111 Project of China under Grant B08013State Grid Corporation of China under Grant XT71-14-042.
文摘A hierarchical control scheme is proposed for optimal power flow control to minimize loss in a hybrid multiterminal HVDC(hybrid-MTDC)transmission system.In this scheme,the lower level is the droop control,which enables fast response to power fluctuation and ensures a stable DC voltage,and the upper level is power flow optimization control,which minimizes the losses during the operation of hybrid-MTDC and solves the contradiction between minimizing losses and preventing commutation failure.A 6-terminal hybrid-MTDC is also designed and simulated in PSCAD according to the potential demand of power transmission and wind farms integration in China to verify the proposed control strategy.First,the steady state analysis is conducted and then compared with simulation results.The analysis shows that the proposed control scheme achieves the desired minimum losses while at the same time satisfying system constraints.The proposed control scheme also guarantees that the hybrid-MTDC not only has a good dynamic response,but also remains stable during communication failure.
基金by a project under the scheme entitled“Developing Policies&Adaptation Strategies to Climate Change in the Baltic Sea Region”(ASTRA),Project No.ASTRA6-4(2014-2020.4.01.16-0032).
文摘Decreasing costs and favorable policies have resulted in increased penetration of solar photovoltaic(PV)power generation in distribution networks.As the PV systems penetration is likely to increase in the future,utilizing the reactive power capability of PV inverters to mitigate voltage deviations is being promoted.In recent years,droop control of inverter-based distributed energy resources has emerged as an essential tool for use in this study.The participation of PV systems in voltage regulation and its coordination with existing controllers,such as on-load tap changers,is paramount for controlling the voltage within specified limits.In this work,control strategies are presented that can be coordinated with the existing controls in a distributed manner.The effectiveness of the proposed method was demonstrated through simulation results on a distribution system.
基金supported by the State Grid Corporation of China Headquarter technology project (52010118000K)
文摘For demonstrating a multiterminal voltage-source converter(VSC)-based high-voltage DC(HVDC)(VSCHVDC) project, this study puts forward a technical route for calculating the power flow in a 500-kV VSC-HVDC power grid in comparison with that of an AC power grid. The Jacobian matrix used in the power-flow calculation was deduced through methods such as Newton–Laphson iteration and Taylor series expansion. Further, the operation effect of powerflow calculation on a true bipolar VSC-HVDC power grid was analyzed briefly. The elements of the Jacobian matrix corresponding to VSC were studied under the mode of droop control and the control strategy of VSC-HVDC power grid was analyzed in detail. The power-flow calculation model for VSC-HVDC power grid of the master–slave control mode was simplified using the PQ decomposition method of the power-flow calculation of an AC power grid. Moreover, a four-terminal model of the Zhangbei VSC-HVDC demonstration project was established and tested on MATLAB. The simulation results under two kinds of operating conditions were analyzed and compared to the results of BPA; the deviation between the power-flow results was studied. The results show that the proposed calculation method can provide a feasible support for calculating the power flow in VSC-HVDC grids.
基金This study was supported by National Natural Science Foundation of China(No.50937002,No.51190104)National HI-Tech R&D Program of China(No.2011AA05A112).
文摘Multi-terminal high-voltage DC(MTDC)technology is a promising way to transmit large amounts of offshore wind power to the main grids.This paper proposes a hybrid MTDC scheme to integrate several offshore wind farms into the onshore power grids at different locations.A hybrid four-terminal HVDC system comprising two onshore line commutated converters(LCCs)and two voltage source converters(VSCs)connecting an offshore wind farm is constructed in PSCAD/EMTDC.A coordination control scheme based on the VSCs’AC voltage control and the LCCs’DC voltage droop control is designed to ensure smooth system operation and proper power sharing between onshore AC grids.The operational characteristics of the system are analyzed.In addition,a black start-up method without any auxiliary power supply for the VSCs is proposed.The transmission scheme is tested through simulations under various conditions,including start-up,wind speed variation,and the disconnection of one VSC or of one LCC.
基金supported in part by Nation Natural Science Foundation of China(51407128)the key technologies research project on distribution network reconfiguration of State Grid Hunan Electric Power Company(5216A1300JV).
文摘Since micro-sources are mostly interfaced to microgrid by power inverters,this paper gives an insight of the control methods of the micro-source inverters by reviewing some recent documents.Firstly,the basic principles of different inverter control methods are illustrated by analyzing the electrical circuits and control loops.Then,the main problems and some typical improved schemes of theωU-droop grid-supporting inverter are presented.In results and discussion part,the comparison of different kinds of inverters is presented and some notable research points is discussed.It is concluded that the most promising control method should be theωU-droop control,and it is meaningful to study the performance improvement methods under realistic operation conditions in the future work.
基金National Key R&D Program of China(2018YFB0905000)Science and Technology Project of State Grid Corporation of China(SGTJDK00DWJS1800232).
文摘In the light of user-side energy power control requirements, a power control strategy for a household-level EPR based on HES droop control is proposed, focusing on the on-grid, off-grid and seamless switching process. The system operating states are divided based on the DC bus voltage information with one converter used as a slack terminal to stabilize the DC bus voltage and the other converters as power terminals. In the on-grid mode, the GCC and the HES are used as the main control unit to achieve on-grid stable operation, whereas in the off-grid mode, the PV, HES and LC are used as the main control unit at different voltages to achieve stable operation of the island network. Finally, a DC MG system based on a household-level EPR is developed using the PSCAD / EMTDC simulation platform and the results show that the control strategy can effectively adjust the output of each subunit and maintain the stability of the DC bus voltage.
基金supported by the National Natural Science Foundation of China(No.52177122)the“Transformational Technologies for Clean Energy and Demonstration”,Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA 21050100)the Youth Innovation Promotion Association CAS(No.2018170)。
文摘Grid-forming(GFM)converters can provide inertia support for power grids through control technology,stabilize voltage and frequency,and improve system stability,unlike traditional grid-following(GFL)converters.Therefore,in future“double high”power systems,research on the control technology of GFM converters will become an urgent demand.In this paper,we first introduce the basic principle of GFM control and then present five currently used control strategies for GFM converters:droop control,power synchronization control(PSC),virtual synchronous machine control(VSM),direct power control(DPC),and virtual oscillator control(VOC).These five strategies can independently establish voltage phasors to provide inertia to the system.Among these,droop control is the most widely used strategy.PSC and VSM are strategies that simulate the mechanical characteristics of synchronous generators;thus,they are more accurate than droop control.DPC regulates the active power and reactive power directly,with no inner current controller,and VOC is a novel method under study using an oscillator circuit to realize synchronization.Finally,we highlight key technologies and research directions to be addressed in the future.
基金supported by National Natural Science Foundation of China under Grant 51977066。
文摘Since the fault dynamic of droop-controlled inverter is different from synchronous generators (SGs), protection devices may become invalid, and the fault overcurrent may damage power electronic devices and threaten the safety of the microgrid. Therefore, it is imperative to conduct a comprehensive fault analysis of the inverter to guide the design of protection schemes. However, due to the complexity of droop control strategy, existing literatures have simplified asymmetric fault analysis of droop-controlled inverters to varying degrees. Therefore, accurate fault analysis of a droop-controlled inverter is needed. In this paper, by analyzing the control system, an accurate fault model is established. Based on this, a calculation method for instantaneous asymmetrical fault current is proposed. In addition, the current components and current characteristics are analyzed. It was determined that fault currents are affected by control loops, fault types, fault distance and nonlinear limiters. In particular, the influences of limiters on the fault model, fault current calculation and fault current characteristics were analyzed. Through detailed analysis, it was found that dynamics of the control loop cannot be ignored, the fault type and fault distance determine fault current level, and part of the limiters will totally change the fault current trend. Finally, calculation and experimental results verify the correctness of the proposed method.