Abstract Monthly mean sea ice motion vectors and monthly mean sea level pressure (SLP) for the period of 1979-2006 are investigated to understand the spatial and temporal changes of Arctic sea-ice drift. According t...Abstract Monthly mean sea ice motion vectors and monthly mean sea level pressure (SLP) for the period of 1979-2006 are investigated to understand the spatial and temporal changes of Arctic sea-ice drift. According to the distinct differences in monthly mean ice velocity field as well as in the distribution of SLP, there are four primary types in the Arctic Ocean: Beaufort Gyre+Transpolar Drift, Anticyclonic Drift, Cyclonic Drift and Double Gyre Drift. These four types account for 81% of the total, and reveal distinct seasonal variations. The Cyclonic Drift with a large-scale anticlockwise ice motion pattern trends to prevail in summer while the Anticyclonic Drift with an opposite pattern trends to prevail in winter and spring. The prevailing seasons for the Beaufort Gyre+Transpolar Drift are spring and autumn, while the Double Gyre Drift trends to prevail in winter, especially in Feb- ruary. The annual occurring times of the Anticyclonic Drift and the Cyclonic Drift are closely correlated with the yearly mean Arc- tic Oscillation (AO) index, with a correlation coefficient of -0.54 and 0.54 (both significant with the confident level of 99%), re- spectively. When the AO index stays in a high positive (negative) condition, the sea-ice motion in the Arctic Ocean demonstrates a more anticlockwise (clockwise) drifting pattern as a whole. When the AO index stays in a neutral condition, the sea-ice motion becomes much more complicated and more transitional types trend to take place.展开更多
In summer of 2001, 2002 and 2003, ten, six and seventeen satellite-tracked surface drifters with drogues centered at 15 and 4 m were deployed, respectively, in the southern Yellow Sea (YS). 23 drifters of them transmi...In summer of 2001, 2002 and 2003, ten, six and seventeen satellite-tracked surface drifters with drogues centered at 15 and 4 m were deployed, respectively, in the southern Yellow Sea (YS). 23 drifters of them transmitted useful data of at least 30 days. The wind-driven component of the drift was removed from the original drift velocity of drifters. The wind data used are from NCEP (National Center for Environmental Prediction), USA.Trajectories and drift velocities of the 23 drifters depicted the upper circulation structure in the southern YS.There exists an anti-cyclonic eddy with a mean speed and radius of 0.063 m/s and 50km in the central southern YS, whose center lingered within 35.3-36.0°N / 123.5-124.0°E. Showed by 6 drifters, a basin-scale elliptic cyclonic gyre with a mean speed of 0.114 m/s, long and short radius of 250 and 200 km surrounds the anti-cyclonic eddy. In the southwestern part of the southern YS has obvious frontal eddy activities within about100 km with a mean speed about 0.076 m/s. All the drifters passing Korean coast were staggering for more than10 days west of a protruding cape of central Korea. A small-scale cyclonic eddy centered at around 120.5°E/35.1°N with a mean speed of 0.048 m/s was observed in western part of the southern YS.展开更多
A pattern matching based tracking algorithm, named MdcPatRec, is used for the reconstruction of charged tracks in the drift chamber of the BESIII detector. This paper addresses the shortage of segment finding in the M...A pattern matching based tracking algorithm, named MdcPatRec, is used for the reconstruction of charged tracks in the drift chamber of the BESIII detector. This paper addresses the shortage of segment finding in the MdcPatRec algorithm. An extended segment construction scheme and the corresponding pattern dictionary are presented. Evaluation with Monte-Carlo and experimental data show that the new method can achieve higher efficiency for low transverse momentum tracks.展开更多
基金the National Natural Science Foundation of China (Grant no. 40631006)the National Major Science Project of China for Global Change Research (Grant no. 2010CB951403)
文摘Abstract Monthly mean sea ice motion vectors and monthly mean sea level pressure (SLP) for the period of 1979-2006 are investigated to understand the spatial and temporal changes of Arctic sea-ice drift. According to the distinct differences in monthly mean ice velocity field as well as in the distribution of SLP, there are four primary types in the Arctic Ocean: Beaufort Gyre+Transpolar Drift, Anticyclonic Drift, Cyclonic Drift and Double Gyre Drift. These four types account for 81% of the total, and reveal distinct seasonal variations. The Cyclonic Drift with a large-scale anticlockwise ice motion pattern trends to prevail in summer while the Anticyclonic Drift with an opposite pattern trends to prevail in winter and spring. The prevailing seasons for the Beaufort Gyre+Transpolar Drift are spring and autumn, while the Double Gyre Drift trends to prevail in winter, especially in Feb- ruary. The annual occurring times of the Anticyclonic Drift and the Cyclonic Drift are closely correlated with the yearly mean Arc- tic Oscillation (AO) index, with a correlation coefficient of -0.54 and 0.54 (both significant with the confident level of 99%), re- spectively. When the AO index stays in a high positive (negative) condition, the sea-ice motion in the Arctic Ocean demonstrates a more anticlockwise (clockwise) drifting pattern as a whole. When the AO index stays in a neutral condition, the sea-ice motion becomes much more complicated and more transitional types trend to take place.
文摘In summer of 2001, 2002 and 2003, ten, six and seventeen satellite-tracked surface drifters with drogues centered at 15 and 4 m were deployed, respectively, in the southern Yellow Sea (YS). 23 drifters of them transmitted useful data of at least 30 days. The wind-driven component of the drift was removed from the original drift velocity of drifters. The wind data used are from NCEP (National Center for Environmental Prediction), USA.Trajectories and drift velocities of the 23 drifters depicted the upper circulation structure in the southern YS.There exists an anti-cyclonic eddy with a mean speed and radius of 0.063 m/s and 50km in the central southern YS, whose center lingered within 35.3-36.0°N / 123.5-124.0°E. Showed by 6 drifters, a basin-scale elliptic cyclonic gyre with a mean speed of 0.114 m/s, long and short radius of 250 and 200 km surrounds the anti-cyclonic eddy. In the southwestern part of the southern YS has obvious frontal eddy activities within about100 km with a mean speed about 0.076 m/s. All the drifters passing Korean coast were staggering for more than10 days west of a protruding cape of central Korea. A small-scale cyclonic eddy centered at around 120.5°E/35.1°N with a mean speed of 0.048 m/s was observed in western part of the southern YS.
基金Supported by Ministry of Science and Technology of China(2009CB825200)Joint Funds of National Natural Science Foundation of China(11079008,11121092)+1 种基金Natural Science Foundation of China(10905091)SRF for ROCS of SEM
文摘A pattern matching based tracking algorithm, named MdcPatRec, is used for the reconstruction of charged tracks in the drift chamber of the BESIII detector. This paper addresses the shortage of segment finding in the MdcPatRec algorithm. An extended segment construction scheme and the corresponding pattern dictionary are presented. Evaluation with Monte-Carlo and experimental data show that the new method can achieve higher efficiency for low transverse momentum tracks.